Pinsky phenomenon

Last updated

In mathematics, the Pinsky phenomenon is a result in Fourier analysis. [1] This phenomenon was discovered by Mark Pinsky of Northwestern University. It involves the spherical inversion of the Fourier transform. The phenomenon involves a lack of convergence at a point due to a discontinuity at boundary. This lack of convergence in the Pinsky phenomenon happens far away from the boundary of the discontinuity, rather than at the discontinuity itself seen in the Gibbs phenomenon. This non-local phenomenon is caused by a lensing effect.

Contents

Prototypical example

Let a function g(x) = 1 for |x| < c in 3 dimensions, with g(x) = 0 elsewhere. The jump at |x| = c will cause an oscillatory behavior of the spherical partial sums, which prevents convergence at the center of the ball as well as the possibility of Fourier inversion at x = 0. Stated differently, spherical partial sums of a Fourier integral of the indicator function of a ball are divergent at the center of the ball but convergent elsewhere to the desired indicator function. This prototype example was coined the ”Pinsky phenomenon” by Jean-Pierre Kahane, CRAS, 1995.

Generalizations

This prototype example can be suitably generalized to Fourier integral expansions in higher dimensions, both in Euclidean space and other non-compact rank-one symmetric spaces. Also related are eigenfunction expansions on a geodesic ball in a rank-one symmetric space, but one must consider boundary conditions. Pinsky and others also represent some results on the asymptotic behavior of the Fejer approximation in one dimension, inspired by work of Bump, Persi Diaconis, and J. B. Keller.

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into terms of the intensity of its constituent pitches.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

<span class="mw-page-title-main">Eigenfunction</span> Mathematical function of a linear operator

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as

In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive-definite kernel.

In mathematics, the Gibbs phenomenon is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The function's th partial Fourier series produces large peaks around the jump which overshoot and undershoot the function's actual values. This approximation error approaches a limit of about 9% of the jump as more sinusoids are used, though the infinite Fourier series sum does eventually converge almost everywhere except the point of discontinuity.

In mathematics and its applications, classical Sturm–Liouville theory is the theory of real second-order linear ordinary differential equations of the form:

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

In mathematics, the question of whether the Fourier series of a periodic function converges to a given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily given in the general case, and certain criteria must be met for convergence to occur.

In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a real-valued, periodic function f to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well. It is one of many conditions for the convergence of Fourier series.

Mark A. Pinsky was Professor of Mathematics at Northwestern University. His research areas included probability theory, mathematical analysis, Fourier Analysis and wavelets. Pinsky earned his Ph.D at Massachusetts Institute of Technology (MIT).

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space.

Carleson's theorem is a fundamental result in mathematical analysis establishing the pointwise (Lebesgue) almost everywhere convergence of Fourier series of L2 functions, proved by Lennart Carleson (1966). The name is also often used to refer to the extension of the result by Richard Hunt (1968) to Lp functions for p(1, ∞] and the analogous results for pointwise almost everywhere convergence of Fourier integrals, which can be shown to be equivalent by transference methods.

In mathematics, a radial function is a real-valued function defined on a Euclidean space Rn whose value at each point depends only on the distance between that point and the origin. The distance is usually the Euclidian distance. For example, a radial function Φ in two dimensions has the form

References

  1. Taylor, Michael E. (2002). "The Gibbs phenomenon, the Pinsky phenomenon, and variants for eigenfunction expansions". Communications in Partial Differential Equations. 27 (3): 565–605. doi:10.1081/PDE-120002866. S2CID   122314504.