Planetary surface construction

Last updated

Planetary-surface construction is the construction of artificial habitats and other structures on planetary surfaces. Planetary surface construction can be divided into three phases or classes, coinciding with a phased schedule for habitation: [1] [2]

Contents

• Class I: Pre-integrated hard shell modules ready to use immediately upon delivery.

• Class II: Prefabricated kit-of-parts that is surface assembled after delivery.

• Class III: in-situ resource utilization (ISRU) derived structure with integrated Earth components.

Class I structures are prepared and tested on Earth, and are designed to be fully self-contained habitats that can be delivered to the surface of other planets. In an initial mission to put human explorers on Mars, a Class I habitat would provide the bare minimum habitable facilities when continued support from Earth is not possible.

The Class II structures call for a pre-manufactured kit-of-parts system that has flexible capacity for demountability and reuse. Class II structures can be used to expand the facilities established by the initial Class I habitat, and can allow for the assembly of additional structures either before the crew arrives, or after their occupancy of the pre-integrated habitat.

The purpose of Class III structures is to allow for the construction of additional facilities that would support a larger population, and to develop the capacity for the local production of building materials and structures without the need for resupply from Earth.

To facilitate the development of technology required to implement the three phases, Cohen and Kennedy (1997) stress the need to explore robust robotic system concepts that can be used to assist in the construction process, or perform the tasks autonomously. Among other things, they suggest a roadmap that stresses the need for adapting structural components for robotic assembly, and determining appropriate levels of modularity, assembly, and component packaging. The roadmap also sets the development of experimental construction systems in parallel with components as an important milestone.

See also

Related Research Articles

Ames Research Center Research center operated by NASA

The Ames Research Center (ARC), also known as NASA Ames, is a major NASA research center at Moffett Federal Airfield in California's Silicon Valley. It was founded in 1939 as the second National Advisory Committee for Aeronautics (NACA) laboratory. That agency was dissolved and its assets and personnel transferred to the newly created National Aeronautics and Space Administration (NASA) on October 1, 1958. NASA Ames is named in honor of Joseph Sweetman Ames, a physicist and one of the founding members of NACA. At last estimate NASA Ames has over US$3 billion in capital equipment, 2,300 research personnel and a US$860 million annual budget.

Spaceport Place used to launch and receive rockets/launch vehicles and spacecraft

A spaceport or cosmodrome is a site for launching spacecraft, by analogy to seaport for ships or airport for aircraft. The word spaceport, and even more so cosmodrome, has traditionally been used for sites capable of launching spacecraft into orbit around Earth or on interplanetary trajectories. However, rocket launch sites for purely sub-orbital flights are sometimes called spaceports, as in recent years new and proposed sites for suborbital human flights have been frequently referred to or named 'spaceports'. Space stations and proposed future bases on the moon are sometimes called spaceports, in particular if intended as a base for further journeys.

Constellation program Cancelled 2005–2010 United States human spaceflight program, aimed at crewed exploration of the Moon, Mars, and minor planets

The Constellation Program is a cancelled crewed spaceflight program developed by NASA, the space agency of the United States, from 2005 to 2009. The major goals of the program were "completion of the International Space Station" and a "return to the Moon no later than 2020" with a crewed flight to the planet Mars as the ultimate goal. The program's logo reflected the three stages of the program: the Earth (ISS), the Moon, and finally Mars—while the Mars goal also found expression in the name given to the program's booster rockets: Ares. The technological aims of the program included the regaining of significant astronaut experience beyond low Earth orbit and the development of technologies necessary to enable sustained human presence on other planetary bodies.

Colonization of the Moon Proposed establishment of a permanent human community or robotic industries on the Moon

Colonization of the Moon is a concept employed by some proposals of establishing permanent human settlement or robotic presence on the Moon, the closest astronomical body to Earth.

Planetary protection A guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth

Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail.

Space manufacturing

In-Space Manufacturing(ISM) involves a comprehensive set of processes aimed at the production of manufactured goods in the space environment. ISM is also often used interchangeably with the term in-orbit manufacturing given that current production capabilities are limited to low Earth orbit.

Exploration Systems Architecture Study

The Exploration Systems Architecture Study (ESAS) is the official title of a large-scale, system level study released by the National Aeronautics and Space Administration (NASA) in November 2005 in response to American president George W. Bush's announcement on January 14, 2004 of his goal of returning astronauts to the Moon and eventually Mars — known as the Vision for Space Exploration. The Constellation Program was cancelled in 2010 by the Obama Administration and replaced with the Artemis Program in 2017 under the Trump Administration.

Aerospace architecture is broadly defined to encompass architectural design of non-habitable and habitable structures and living and working environments in aerospace-related facilities, habitats, and vehicles. These environments include, but are not limited to: science platform aircraft and aircraft-deployable systems; space vehicles, space stations, habitats and lunar and planetary surface construction bases; and Earth-based control, experiment, launch, logistics, payload, simulation and test facilities. Earth analogs to space applications may include Antarctic, desert, high altitude, underground, undersea environments and closed ecological systems.

NASA Institute for Advanced Concepts

The NASA Institute for Advanced Concepts (NIAC) is a NASA program for development of far reaching, long term advanced concepts by "creating breakthroughs, radically better or entirely new aerospace concepts". The program operated under the name NASA Institute for Advanced Concepts from 1998 until 2007, and was reestablished in 2011 under the name NASA Innovative Advanced Concepts and continues to the present. The NIAC program funds work on revolutionary aeronautics and space concepts that can dramatically impact how NASA develops and conducts its missions.

In situ resource utilization Astronautical use of materials harvested in outer space

In space exploration, in situ resource utilization (ISRU) is the practice of collection, processing, storing and use of materials found or manufactured on other astronomical objects that replace materials that would otherwise be brought from Earth.

Lunar outpost (NASA) Concepts for an extended human presence on the Moon

A lunar outpost is a concept of a permanent or semi-permanent presence of humans on the Moon by the United States space administration NASA. NASA has requested an increase in the 2020 budget of $1.6 billion, in order to make another crewed mission to the Moon by 2024, followed by a sustained presence on the Moon by 2028.

Human mission to Mars Various proposed crewed mission concepts to Mars

A human mission to Mars has been the subject of science fiction, aerospace engineering and scientific proposals since the 20th century. Plans include landing on Mars for exploration at a minimum, with the possibility of sending settlers and terraforming the planet or exploring its moons Phobos and Deimos also considered.

Inflatable space habitat Structure that can support life whose volume can be increased in outer space

Inflatable habitats or expandable habitats are pressurized structures capable of supporting life in outer space whose internal volume increases after launch. They have frequently been proposed for use in space applications to provide a greater volume of living space for a given mass.

Lunarcrete, also known as "mooncrete", an idea first proposed by Larry A. Beyer of the University of Pittsburgh in 1985, is a hypothetical aggregate building material, similar to concrete, formed from lunar regolith, that would reduce the construction costs of building on the Moon.

Space architecture Architecture

Space architecture is the theory and practice of designing and building inhabited environments in outer space. The architectural approach to spacecraft design addresses the total built environment. It is mainly based on the field of engineering, but also involves diverse disciplines such as physiology, psychology, and sociology. Like architecture on Earth, the attempt is to go beyond the component elements and systems and gain a broad understanding of the issues that affect design success. Space architecture borrows from multiple forms of niche architecture to accomplish the task of ensuring human beings can live and work in space. These include the kinds of design elements one finds in “tiny housing, small living apartments/houses, vehicle design, capsule hotels, and more.”

Planetary science Science of astronomical objects apparently in orbit around one or more stellar objects within a few light years

Planetary science or, more rarely, planetology, is the scientific study of planets, moons, and planetary systems and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, originally growing from astronomy and earth science, but which now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

Swamp Works

The Swamp Works is a lean-development, rapid innovation environment at NASA's Kennedy Space Center. It was founded in 2012, when four laboratories in the Surface Systems Office were merged into an enlarged facility with a modified philosophy for rapid technology development. Those laboratories are the Granular Mechanics and Regolith Operations Lab, the Electrostatics and Surface Physics Lab, the Applied Chemistry Lab, and the Life Support and Habitation Systems (LSHS) team. The first two of these are located inside the main Swamp Works building, while the other two use the facility although their primary work is located elsewhere. The team developed the Swamp Works operating philosophy from Kelly Johnson's Skunk Works, including the "14 Rules of Management", from the NASA development shops of Wernher von Braun, and from the innovation culture of Silicon Valley. The team prototypes space technologies rapidly to learn early in the process how to write better requirements, enabling them to build better products, rapidly, and at reduced cost. It was named the Swamp Works for similarity with the Skunk Works and the Phantom Works, but branded by the widespread marshes (swamps) on the Cape Canaveral property of the Kennedy Space Center. The Swamp Works was co-founded by NASA engineers and scientists Jack Fox, Rob Mueller, and Philip Metzger. The logo, a robotic alligator, was designed by Rosie Mueller, a professional designer and the spouse of Rob Mueller.

CubeRover is a class of planetary rover with a standardized modular format meant to accelerate the pace of space exploration. The idea is equivalent to that of the successful CubeSat format, with standardized off-the-shelf components and architecture to assemble small units that will be all compatible, modular, and inexpensive.

The World Is Not Enough (WINE) is a US project developing a refuelable steam engine system for spacecraft propulsion. WINE developed a method of extracting volatiles from ice, ice-rich regolith, and hydrated soils and uses it as steam propulsion which allows the spacecraft to refuel multiple times and have an extraordinary long service lifetime. This would allow a single spacecraft to visit multiple asteroids, comets or several landing locations at an icy world such as the Moon, Mars, Pluto, Enceladus, Ganymede, Europa, etc.

Artemis program Crewed lunar exploration program by NASA

The Artemis program is a US government-funded human spaceflight program that has the goal of landing "the first woman and the next man" on the Moon, specifically at the lunar south pole region by 2024. The program is carried out predominantly by NASA, U.S. commercial spaceflight companies contracted by NASA, and international partners including the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), Canadian Space Agency (CSA), the Italian Space Agency (ASI) the Australian Space Agency (ASA), the UK Space Agency (UKSA) and the United Arab Emirates Space Agency (UAESA). NASA is leading the program, but expects international partnerships to play a key role in advancing Artemis as the next step towards the long-term goal of establishing a sustainable presence on the Moon, laying the foundation for private companies to build a lunar economy, and eventually sending humans to Mars.

References

  1. Kennedy 2002
  2. Smith 1993

Citations