Plastic crystal

Last updated

A plastic crystal is a crystal composed of weakly interacting molecules that possess some orientational or conformational degree of freedom. The name plastic crystal refers to the mechanical softness of such phases: they resemble waxes and are easily deformed. If the internal degree of freedom is molecular rotation, the name rotor phase or rotatory phase is also used. Typical examples are the modifications Methane I and Ethane I. In addition to the conventional molecular plastic crystals, there are also emerging ionic plastic crystals, particularly organic ionic plastic crystals (OIPCs) and protic organic ionic plastic crystals (POIPCs). [1] [2] POIPCs are solid protic organic salts formed by proton transfer from a Brønsted acid to a Brønsted base and in essence are protic ionic liquids in the molten state, have found to be promising solid-state proton conductors for high temperature proton-exchange membrane fuel cells. [1] Examples include 1,2,4-triazolium perfluorobutanesulfonate [1] and imidazolium methanesulfonate. [2]

Contents

If the internal degree of freedom freezes in a disordered way, an orientational glass is obtained.

The orientational degree of freedom may be an almost free rotation, or it may be a jump diffusion between a restricted number of possible orientations, as was shown for carbon tetrabromide. [3]

X- ray diffraction patterns of plastic crystals are characterized by strong diffuse intensity in addition to the sharp Bragg peaks. [1] In a powder pattern this intensity appears to resemble an amorphous background as one would expect for a liquid, [1] but for a single crystal the diffuse contribution reveals itself to be highly structured. The Bragg peaks can be used to determine an average structure but due to the large amount of disorder this is not very insightful. It is the structure of the diffuse scattering that reflects the details of the constrained disorder in the system. Recent advances in two-dimensional detection at synchrotron beam lines facilitate the study of such patterns.

Mechanical properties

Plastic crystals behave like true plastic metals under mechanical stress. [4]

For example, closer to melting, plastic crystals show high ductility and/or malleability. Plastic crystals can flow through a hole under pressure. For example, aminoborane plastic crystals [4] bend, twist and stretch with characteristic necking, under appropriate stress. These crystals can be literally shaped into any possible way, like copper or silver metals.

This way, they are very unique compared to other molecular crystals, which are generally brittle and fragile.

Plastic crystals versus liquid crystals

Like liquid crystals, plastic crystals can be considered a transitional stage between real solids and real liquids and can be considered soft matter. Another common denominator is the simultaneous presence of order and disorder. Both types of phases are usually observed between the true solid and liquid phases on the temperature scale:

true crystal → plastic crystal → true liquid
true crystal → liquid crystal → true liquid

The difference between liquid and plastic crystals is easily observed in X-ray diffraction. Plastic crystals possess strong long range order and therefore show sharp Bragg reflections. [1] Liquid crystals show none or very broad Bragg peaks because the order is not long range. The molecules that give rise to liquid crystalline behavior often have a strongly elongated or disc like shape. Plastic crystals consist usually of almost spherical objects. In this respect one could see them as opposites.

Certain liquid crystals go through plastic crystal phase before melting. In general, liquid crystals are closer to liquids while plastic crystals are closer to true crystals.

History

Plastic crystals were discovered in 1938 by J. Timmermans by their anomalously low melting entropy. He found that organic substances having a melting entropy lower than approximately 17 J·K−1·mol−1 (~2Rg) are having peculiar properties. Timmermans named them molecular globulare.

Michils showed in 1948 that these organic compounds are easily deformed and accordingly named them, plastic crystals (cristaux organiques plastiques). [5] Perfluorocyclohexane for example is plastic to such a degree that it will start to flow under its own weight. [6]

Related Research Articles

<span class="mw-page-title-main">Acid</span> Chemical compound giving a proton or accepting an electron pair

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

<span class="mw-page-title-main">Hydrogen bond</span> Intermolecular attraction between a hydrogen-donor pair and an acceptor

In chemistry, a hydrogen bond is primarily an electrostatic force of attraction between a hydrogen (H) atom which is covalently bonded to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac). Such an interacting system is generally denoted Dn−H···Ac, where the solid line denotes a polar covalent bond, and the dotted or dashed line indicates the hydrogen bond. The most frequent donor and acceptor atoms are the period 2 elements nitrogen (N), oxygen (O), and fluorine (F).

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in solid. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. An LC material may not always be in an LC state of matter.

<span class="mw-page-title-main">State of matter</span> Distinct forms that matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma. For a list of exotic states of matter, see the article List of states of matter.

An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dissolving, the substance separates into cations and anions, which disperse uniformly throughout the solvent. Solid-state electrolytes also exist. In medicine and sometimes in chemistry, the term electrolyte refers to the substance that is dissolved.

<span class="mw-page-title-main">Ionic compound</span> Chemical compound involving ionic bonding

In chemistry, an ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding. The compound is neutral overall, but consists of positively charged ions called cations and negatively charged ions called anions. These can be simple ions such as the sodium (Na+) and chloride (Cl) in sodium chloride, or polyatomic species such as the ammonium (NH+
4
) and carbonate (CO2−
3
) ions in ammonium carbonate. Individual ions within an ionic compound usually have multiple nearest neighbours, so are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Ionic compounds usually form crystalline structures when solid.

<span class="mw-page-title-main">Proton-exchange membrane fuel cell</span> Power generation technology

Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.

<span class="mw-page-title-main">Ionic liquid</span> Salt in the liquid state

An ionic liquid (IL) is a salt in the liquid state at ambient conditions. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as 100 °C (212 °F). While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions. These substances are variously called liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glasses.

<span class="mw-page-title-main">Proton conductor</span> Type of electrolyte

A proton conductor is an electrolyte, typically a solid electrolyte, in which H+ are the primary charge carriers.

A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane.

<span class="mw-page-title-main">Carbon tetrabromide</span> Chemical compound

Tetrabromomethane, CBr4, also known as carbon tetrabromide, is a bromide of carbon. Both names are acceptable under IUPAC nomenclature.

Deep eutectic solvents or DESs are solutions of Lewis or Brønsted acids and bases which form a eutectic mixture. Deep eutectic solvents are highly tunable through varying the structure or relative ratio of parent components and thus have a wide variety of potential applications including catalytic, separation, and electrochemical processes. The parent components of deep eutectic solvents engage in a complex hydrogen bonding network which results in significant freezing point depression as compared to the parent compounds. The extent of freezing point depression observed in DESs is well illustrated by a mixture of choline chloride and urea in a 1:2 mole ratio. Choline chloride and urea are both solids at room temperature with melting points of 302 °C and 133 °C respectively, yet the combination of the two in a 1:2 molar ratio forms a liquid with a freezing point of 12 °C. DESs share similar properties to ionic liquids such as tunability and lack of flammability yet are distinct in that ionic liquids are neat salts composed exclusively of discrete ions. In contrast to ordinary solvents, such as Volatile Organic Compounds (VOC), DESs are non-flammable, and possess low vapour pressures and toxicity.

This glossary of chemistry terms is a list of terms and definitions relevant to chemistry, including chemical laws, diagrams and formulae, laboratory tools, glassware, and equipment. Chemistry is a physical science concerned with the composition, structure, and properties of matter, as well as the changes it undergoes during chemical reactions; it features an extensive vocabulary and a significant amount of jargon.

<span class="mw-page-title-main">Mesophase</span>

In chemistry and chemical physics, a mesophase or mesomorphic phase is a phase of matter intermediate between solid and liquid. Gelatin is a common example of a partially ordered structure in a mesophase. Further, biological structures such as the lipid bilayers of cell membranes are examples of mesophases. Mesophases with long-range positional order but no orientational order are plastic crystals, whereas those with long-range orientational order but only partial or no positional order are liquid crystals.

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

A network solid or covalent network solid is a chemical compound in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material. In a network solid there are no individual molecules, and the entire crystal or amorphous solid may be considered a macromolecule. Formulas for network solids, like those for ionic compounds, are simple ratios of the component atoms represented by a formula unit.

Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation. Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the degree of crystallinity, but also by the size and orientation of the molecular chains.

In solid-state physics, an orientational glass is a molecular solid in which crystalline long-range order coexists with quenched disorder in some rotational degree of freedom.

In materials science, cocrystals are "solids that are crystalline, single-phase materials composed of two or more different molecular or ionic compounds generally in a stoichiometric ratio which are neither solvates nor simple salts." A broader definition is that cocrystals "consist of two or more components that form a unique crystalline structure having unique properties." Several subclassifications of cocrystals exist.

References

  1. 1 2 3 4 5 6 Jiangshui Luo; Annemette H. Jensen; Neil R. Brooks; Jeroen Sniekers; et al. (2015). "1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells". Energy & Environmental Science . 8 (4): 1276–1291. doi:10.1039/C4EE02280G.
  2. 1 2 Jiangshui Luo; Olaf Conrad & Ivo F. J. Vankelecom (2013). "Imidazolium methanesulfonate as a high temperature proton conductor" (PDF). Journal of Materials Chemistry A . 1 (6): 2238–2247. doi:10.1039/C2TA00713D.
  3. Jacob C. W. Folmer; Ray L. Withers; T. R. Welberry; James D. Martin (2008). "Coupled orientational and displacive degrees of freedom in the high-temperature plastic phase of the carbon tetrabromide α-CBr4". Physical Review B. 77 (14). 144205. Bibcode:2008PhRvB..77n4205F. doi:10.1103/PhysRevB.77.144205.
  4. 1 2 Amit Mondal; Biswajit Bhattacharya; Susobhan Das; Surojit Bhunia; et al. (2020). "Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes". Angewandte Chemie International Edition . 59 (27): 10971–10980. doi:10.1002/anie.202001060. PMID   32087039.
  5. A. Michils (1948). "Recherches stoechiométriques V.VIII. LA PLASTICITÉ D'UN GROUPE PARTICULIER DE CRISTAUX ORGANIQUES". Bulletin des Sociétés Chimiques Belges (in French). 57 (10–12): 575–617. doi:10.1002/bscb.19480571013.
  6. Peter R. Sahm; Iván Egry; Thomas Volkmann, eds. (1999). Schmelze, Erstarrung, Grenzflächen. Eine Einführung in die Physik und Technologie flüssiger und fester Metalle. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-58523-4. ISBN   978-3-540-41566-4.