Pockmark (geology)

Last updated

Pockmarks are concave, crater-like depressions on seabeds that are caused by fluids (liquids and gasses) escaping and erupting through the seafloor. [1] They can vary in size and have been found worldwide.

Contents

Pockmarks were discovered off the coasts of Nova Scotia, Canada in the late 1960s by Lew King and Brian McLean of the Bedford Institute of Oceanography, using a new side scan sonar developed in the late 1960s by Kelvin Hughes. Before the two researchers King and McLean used the side scan sonar, they had noticed 'notches' on echo sounder and shallow seismic records in the seafloor off Nova Scotia. They believed these notches to represent gullies and curvilinear troughs in the muddy seafloor. However, they could never work out how to join these notches from one survey line to the next. It was, therefore, not before they surveyed with the area-coverage system, Side scan sonar, that they realized the notches were in fact closed depressions (craters) and not curvilinear features. This was a great surprise, because there are very few craters on the Earth's surface.

Although pockmarks were first documented and published 50 years ago, they are currently still being discovered on the ocean floor and in many lakes, the world over. Spatial delineation and morphometric characterisation of pockmarks in the central North Sea seabed have been achieved by semi-automatic methods. [2]

The craters off Nova Scotia are up to 150 m (490 ft) in diameter and 10 m (33 ft) deep. Pockmarks have been found worldwide. [3] [4] Discovery was aided by the use of high-resolution multibeam acoustic systems for bathymetric mapping. In these cases, pockmarks have been interpreted as the morphological expression of gas or oil leakage from active hydrocarbon system or a deep overpressured petroleum reservoir. Specifically, long term deep fluid flow resulting in pockmarks is linked to undersea methane gas escape under pressure. [5]

See also

Bibliography

Related Research Articles

<span class="mw-page-title-main">Methane clathrate</span> Methane-water lattice compound

Methane clathrate (CH4·5.75H2O) or (8CH4·46H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice. Originally thought to occur only in the outer regions of the Solar System, where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under sediments on the ocean floors of the Earth. Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water. On the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<span class="mw-page-title-main">Clathrate gun hypothesis</span>

The clathrate gun hypothesis is a proposed explanation for the periods of rapid warming during the Quaternary. The idea is that changes in fluxes in upper intermediate waters in the ocean caused temperature fluctuations that alternately accumulated and occasionally released methane clathrate on upper continental slopes. This would have had an immediate impact on the global temperature, as methane is a much more powerful greenhouse gas than carbon dioxide. Despite its atmospheric lifetime of around 12 years, methane's global warming potential is 72 times greater than that of carbon dioxide over 20 years, and 25 times over 100 years .These warming events would have caused the Bond Cycles and individual interstadial events, such as the Dansgaard–Oeschger interstadials.

SeaSeep is a combination of 2D seismic data, high resolution multibeam sonar which is an evolutionary advanced form of side-scan sonar, navigated piston coring, heat flow sampling and possibly gravity and magnetic data.

<span class="mw-page-title-main">Deep-water coral</span>

The habitat of deep-water corals, also known as cold-water corals, extends to deeper, darker parts of the oceans than tropical corals, ranging from near the surface to the abyss, beyond 2,000 metres (6,600 ft) where water temperatures may be as cold as 4 °C (39 °F). Deep-water corals belong to the Phylum Cnidaria and are most often stony corals, but also include black and thorny corals and soft corals including the Gorgonians. Like tropical corals, they provide habitat to other species, but deep-water corals do not require zooxanthellae to survive.

<span class="mw-page-title-main">Nankai Trough</span>

The Nankai Trough is a submarine trough located south of the Nankaidō region of Japan's island of Honshu, extending approximately 900 km (559 mi) offshore. The underlying fault, the Nankai megathrust, is the source of the devastating Nankai megathrust earthquakes, while the trough itself is potentially a major source of hydrocarbon fuel, in the form of methane clathrate.

<span class="mw-page-title-main">Arctic methane emissions</span> Release of methane from seas and soils in permafrost regions of the Arctic

Arctic methane release is the release of methane from seas and soils in permafrost regions of the Arctic. While it is a long-term natural process, methane release is exacerbated by global warming. This results in a positive feedback cycle, as methane is itself a powerful greenhouse gas.

<span class="mw-page-title-main">Coal Oil Point seep field</span> Marine petroleum seep area near Goleta, California

The Coal Oil Point seep field (COP) in the Santa Barbara Channel offshore from Goleta, California, is a marine petroleum seep area of about three square kilometres, within the Offshore South Ellwood Oil Field and stretching from the coastline southward more than three kilometers (1.9 mi). Major seeps are located in water depths from 20 to 80 meters. The seep field is among the largest and best studied areas of active marine seepage in the world. These perennial and continuous oil and gas seeps have been active on the northern edge of the Santa Barbara Channel for at least 500,000 years. The combined seeps in the field release about 40 tons of methane per day and about 19 tons of reactive organic gas ; about twice the hydrocarbon air pollution released by all the cars and trucks in Santa Barbara County in 1990. The liquid petroleum produces a slick that is many kilometres long and when degraded by evaporation and weathering, produces tar balls which wash up on the beaches for miles around.

<span class="mw-page-title-main">Hotspot Ecosystem Research and Man's Impact On European Seas</span> International multidisciplinary project that studies deep-sea ecosystems

Hotspot Ecosystem Research and Man's Impact On European Seas (HERMIONE) is an international multidisciplinary project, started in April 2009, that studies deep-sea ecosystems. HERMIONE scientists study the distribution of hotspot ecosystems, how they function and how they interconnect, partially in the context of how these ecosystems are being affected by climate change and impacted by humans through overfishing, resource extraction, seabed installations and pollution. Major aims of the project are to understand how humans are affecting the deep-sea environment and to provide policy makers with accurate scientific information, enabling effective management strategies to protect deep sea ecosystems. The HERMIONE project is funded by the European Commission's Seventh Framework Programme, and is the successor to the HERMES project, which concluded in March 2009.

<span class="mw-page-title-main">Methane chimney</span>

A methane chimney or gas chimney is a rising column of natural gas, mainly methane within a water or sediment column. The contrast in physical properties between the gas phase and the surrounding water makes such chimneys visible in oceanographic and geophysical data. In some cases, gas bubbles released at the seafloor may dissolve before they reach the ocean surface, but the increased hydrocarbon concentration may still be measured by chemical oceanographic techniques.

<span class="mw-page-title-main">Asphalt volcano</span> Ocean floor vents that erupt asphalt instead of lava

An asphalt volcano is a rare type of submarine volcano (seamount) first discovered in 2003. Several examples have been found: first, along the coasts of the United States and Mexico, and then in other regions of the world; a few are still active. Resembling seamounts in structure, they are made entirely of asphalt, and form when natural oil seeps up from the Earth's crust underwater.

<span class="mw-page-title-main">Hydrate Ridge</span>

Hydrate Ridge is an accretionary thrust clathrate hydrate formation, meaning it has been made of sediment scraped off of subducting oceanic plate. It is approx. 200 m high, and located 100 km offshore of Oregon. At hydrate formations, methane is trapped in crystallized water structures. Such methane transforms into the gaseous phase and seeps into the ocean at this site, which has been a popular location of study since its discovery in 1986. Hydrate Ridge also supports a methane-driven benthic community.

<i>Peregrinella</i>

Peregrinella is an extinct Early Cretaceous rhynchonellid genus with scattered, global representation from North America to Europe and Tibet. These brachiopods are stationary epifaunal suspension feeders, its most distinguishing feature is the size, considered to be the largest of all Mesozoic rhynchonellids, which has long puzzled paleontologists because of its unusual morphology, stratigraphic occurrence, and distribution patterns.

<span class="mw-page-title-main">Southern Hydrate Ridge</span>

Southern Hydrate Ridge, located about 90 km offshore Oregon Coast, is an active methane seeps site located on the southern portion of Hydrate Ridge. It extends 25 km in length and 15 km across, trending north-northeast-south-southwest at the depth of approximately 800 m. Southern Hydrate Ridge has been the site of numerous submersible dives with the human occupied Alvin submarine, extensive visits by numerous robotic vehicles including the Canadian ROV ROPOS, Jason , and Tiburon (MBARI), and time-series geophysical studies that document changes in the subsurface distribution of methane. It is also a key site of the National Science Foundations Regional Cabled Array that is part of the Ocean Observatories Initiative (OOI), which includes eight types of cabled instruments streaming live data back to shore 24/7/365 at the speed of light, as well as uncabled instruments.

<span class="mw-page-title-main">NOAAS Okeanos Explorer Gulf of Mexico 2017 Expedition</span> Expedition on the NOAAS Okeanos Explorer

NOASS Okeanos Explorer Gulf of Mexico 2017 Expedition was the first of three expeditions on the NOAAS Okeanos Explorer intended to increase the understanding of the deep-sea environment in the Gulf of Mexico. Gulf of Mexico 2017 was a 23-day telepresence-enabled expedition focused on acquiring data on priority exploration areas identified by ocean management and scientific communities. The goal of the expedition was to use remotely operated vehicle (ROV) dives and seafloor mapping operations to increase the understanding of the deep-sea ecosystems in these areas to support management decisions. Many of the areas had no sonar data, these areas were top priority for high-resolution bathymetry collection. The expedition established a baseline of information in the region to catalyze further exploration, research, and management activities. The expedition lasted from 29 November 2017 to 21 December 2017.

A gas hydrate pingo is a submarine dome structure formed by the accumulation of gas hydrates under the seafloor. Gas hydrate pingos resemble the pingo landforms found on land in periglacial regions.

<span class="mw-page-title-main">Heceta Bank</span> Rocky bank off the coast of Oregon, United States

Heceta Bank is a rocky bank located 55 kilometers (km) off the Oregon coast near Florence, centered on approximately 44°N, 125°W, and is roughly 29 km long and upwards of 13 km wide. Heceta Bank is an area of ecological and oceanographic importance. The unique bathymetric features and seasonal circulation within the bank provides habitat for a diversity of economically-important fish species.

Seabed mining, also known as Seafloor mining is the recovery of minerals from the seabed by techniques of underwater mining. The concept includes mining at shallow depths on the continental shelf and deep-sea mining at greater depths associated with tectonic activity, hydrothermal vents and the abyssal plains. While there is opportunity for economical mineral extraction at areas of high concentration of valuable minerals, there is also significant risk of ecological damage of unknown and to some degree, unpredictable, extent. Increasing requirements for minerals and metals, largely for use in the technology sector, has led to renewed interest in exploitation of seabed mineral resources. including massive polymetallic sulfide deposits around hydrothermal vents, cobalt-rich crusts on the sides of seamounts and fields of manganese nodules on the abyssal plains.

Bottom simulating reflectors (BSRs) are, on seismic reflection profiles, shallow seismic reflection events, characterized by their reflection geometry similar to seafloor bathymetry. . They have, however, the opposite reflection polarity to the seabed reflection, and frequently intersect the primary reflections.

Marta E. Torres is a marine geologist known for her work on the geochemistry of cold seeps and methane hydrates. She is a professor at Oregon State University, and an elected fellow of the Geochemical Society and the Geological Society of America.

References

  1. Dandi (1991). "Ecology of a North Sea pockmark with an active methane seep" (PDF). Marine Ecology Progress Series. 70 (1): 49–63. Bibcode:1991MEPS...70...49D. doi: 10.3354/meps070049 . JSTOR   24816798.
  2. Gafeira J, Long D & Diaz-Doce D (2012). Semi-automated characterisation of seabed pockmarks in the central North Sea. Near Surface Geophysics 10: 303-314. https://doi.org/10.3997/1873-0604.2012018
  3. Judd, Alan and Martin Hovland, 'Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment, Cambridge University Press, 2007, ISBN   978-0-521-81950-3
  4. Hovland, Martin, Seabed Pockmarks and Seepages : Geological Ecological and Environmental Implication, Springer, 1988, ISBN   978-0-86010-948-8
  5. Chand et al (2017) Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea Geo-Mar Lett (2017) 37:215–227 DOI 10.1007/s00367-016-0487-x