Polycomb repressive complex 1

Last updated

Polycomb repressive complex 1 (PRC1) is one of the two classes of Polycomb Repressive complexes, the other being PRC2. Polycomb-group proteins play a major role in transcriptional regulation during development. Polycomb Repressive Complexes PRC1 and PRC2 function in the silencing of expression of the Hox gene network involved in development as well as the inactivation of the X chromosome. [1] PRC1 inhibits the activated form of RNA polymerase II preinitiation complex with the use of H3K27me. PRC1 binds to three nucleosomes, this is believed to limit access of transcription factors to the chromatin, and therefore limit gene expression. [2]

Related Research Articles

<span class="mw-page-title-main">Histone</span> Family proteins package and order the DNA into structural units called nucleosomes.

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

Heterochromatin is a tightly packed form of DNA or condensed DNA, which comes in multiple varieties. These varieties lie on a continuum between the two extremes of constitutive heterochromatin and facultative heterochromatin. Both play a role in the expression of genes. Because it is tightly packed, it was thought to be inaccessible to polymerases and therefore not transcribed; however, according to Volpe et al. (2002), and many other papers since, much of this DNA is in fact transcribed, but it is continuously turned over via RNA-induced transcriptional silencing (RITS). Recent studies with electron microscopy and OsO4 staining reveal that the dense packing is not due to the chromatin.

<span class="mw-page-title-main">Transcription preinitiation complex</span> Complex of proteins necessary for gene transcription in eukaryotes and archaea

The preinitiation complex is a complex of approximately 100 proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. The preinitiation complex positions RNA polymerase II at gene transcription start sites, denatures the DNA, and positions the DNA in the RNA polymerase II active site for transcription.

<span class="mw-page-title-main">Antisense RNA</span>

Antisense RNA (asRNA), also referred to as antisense transcript, natural antisense transcript (NAT) or antisense oligonucleotide, is a single stranded RNA that is complementary to a protein coding messenger RNA (mRNA) with which it hybridizes, and thereby blocks its translation into protein. The asRNAs have been found in both prokaryotes and eukaryotes, and can be classified into short and long non-coding RNAs (ncRNAs). The primary function of asRNA is regulating gene expression. asRNAs may also be produced synthetically and have found wide spread use as research tools for gene knockdown. They may also have therapeutic applications.

<span class="mw-page-title-main">General transcription factor</span> Class of protein transcription factors

General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites (promoter) on DNA to activate transcription of genetic information from DNA to messenger RNA. GTFs, RNA polymerase, and the mediator constitute the basic transcriptional apparatus that first bind to the promoter, then start transcription. GTFs are also intimately involved in the process of gene regulation, and most are required for life.

<span class="mw-page-title-main">Silencer (genetics)</span> Type of DNA sequence

In genetics, a silencer is a DNA sequence capable of binding transcription regulation factors, called repressors. DNA contains genes and provides the template to produce messenger RNA (mRNA). That mRNA is then translated into proteins. When a repressor protein binds to the silencer region of DNA, RNA polymerase is prevented from transcribing the DNA sequence into RNA. With transcription blocked, the translation of RNA into proteins is impossible. Thus, silencers prevent genes from being expressed as proteins.

Polycomb-group proteins are a family of protein complexes first discovered in fruit flies that can remodel chromatin such that epigenetic silencing of genes takes place. Polycomb-group proteins are well known for silencing Hox genes through modulation of chromatin structure during embryonic development in fruit flies. They derive their name from the fact that the first sign of a decrease in PcG function is often a homeotic transformation of posterior legs towards anterior legs, which have a characteristic comb-like set of bristles.

<span class="mw-page-title-main">Eukaryotic transcription</span> Transcription is heterocatalytic function of DNA

Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.

Transcription factor TFIIA is a nuclear protein involved in the RNA polymerase II-dependent transcription of DNA. TFIIA is one of several general (basal) transcription factors (GTFs) that are required for all transcription events that use RNA polymerase II. Other GTFs include TFIID, a complex composed of the TATA binding protein TBP and TBP-associated factors (TAFs), as well as the factors TFIIB, TFIIE, TFIIF, and TFIIH. Together, these factors are responsible for promoter recognition and the formation of a transcription preinitiation complex (PIC) capable of initiating RNA synthesis from a DNA template.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">PCGF2</span> Protein-coding gene in the species Homo sapiens

Polycomb group RING finger protein 2, PCGF2, also known as MEL18 or RNF110, is a protein that in humans is encoded by the PCGF2 gene.

<span class="mw-page-title-main">XIST</span> Non-coding RNA

Xist is a non-coding RNA on the X chromosome of the placental mammals that acts as a major effector of the X-inactivation process. It is a component of the Xic – X-chromosome inactivation centre – along with two other RNA genes and two protein genes.

<span class="mw-page-title-main">PCGF1</span> Protein-coding gene in the species Homo sapiens

Polycomb group RING finger protein 1, PCGF1, also known as NSPC1 or RNF68 is a RING finger domain protein that in humans is encoded by the PCGF1 gene.

<span class="mw-page-title-main">PRC2</span>

PRC2 is one of the two classes of polycomb-group proteins or (PcG). The other component of this group of proteins is PRC1.

Reptin is a tumor repressor protein that is a member of the ATPases Associated with various cellular Activities (AAA+) helicase family and regulates KAI1. Desumoylation of reptin alters the repressive function of reptin and its association with HDAC1. The sumoylation status of reptin modulates the invasive activity of cancer cells with metastatic potential. Reptin was reported in 2010 to be a good marker for metastasis. Another name for reptin, RuvB-like 2 comes from its similarity to RuvB, an ATP-dependent helicase found in bacteria. Reptin is highly conserved, being found in yeast, drosophila, and humans. It presents itself as a member of a number of different protein complexes, most of which function in chromatin modification, including PRC1, TIP60/NuA4 and INO80. Hence, it also has the names INO80J, TIP48, and TIP49B. In the majority of its functions, reptin is paired with a very similar protein, pontin (RUVBL1).

<span class="mw-page-title-main">KDM2B</span> Protein-coding gene in humans

The human KDM2B gene encodes the protein lysine (K)-specific demethylase 2B.

Epigenetics of human development is the study of how epigenetics effects human development.

<span class="mw-page-title-main">Polycomb recruitment in X chromosome inactivation</span>

X chromosome inactivation (XCI) is the phenomenon that has been selected during the evolution to balance X-linked gene dosage between XX females and XY males.

H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein.

Robert E. Kingston is an American biochemist who studies the functional and regulatory role nucleosomes play in gene expression, specifically during early development. After receiving his PhD (1981) and completing post-doctoral research, Kingston became an assistant professor at Massachusetts General Hospital (1985), where he started a research laboratory focused on understanding chromatin's structure with regards to transcriptional regulation. As a Harvard graduate himself, Kingston has served his alma mater through his leadership.

References

  1. Plath, Kathrin; Fang, Jia; Mlynarczyk-Evans, Susanna K.; Cao, Ru; Worringer, Kathleen A.; Wang, Hengbin; Cruz, Cecile C. de la; Otte, Arie P.; Panning, Barbara (2003-04-04). "Role of Histone H3 Lysine 27 Methylation in X Inactivation". Science. 300 (5616): 131–135. Bibcode:2003Sci...300..131P. doi: 10.1126/science.1084274 . ISSN   0036-8075. PMID   12649488. S2CID   28578313.
  2. Lehmann, Lynn; Ferrari, Roberto; Vashisht, Ajay A.; Wohlschlegel, James A.; Kurdistani, Siavash K.; Carey, Michael (2012-10-19). "Polycomb Repressive Complex 1 (PRC1) Disassembles RNA Polymerase II Preinitiation Complexes". Journal of Biological Chemistry. 287 (43): 35784–35794. doi: 10.1074/jbc.M112.397430 . ISSN   0021-9258. PMC   3476247 . PMID   22910904.