Poncelet's closure theorem

Last updated

Illustration of Poncelet's porism for n = 3, a triangle that is inscribed in one circle and circumscribes another. PonceletPorism.gif
Illustration of Poncelet's porism for n = 3, a triangle that is inscribed in one circle and circumscribes another.

In geometry, Poncelet's closure theorem, also known as Poncelet's porism, states that whenever a polygon is inscribed in one conic section and circumscribes another one, the polygon must be part of an infinite family of polygons that are all inscribed in and circumscribe the same two conics. [1] [2] It is named after French engineer and mathematician Jean-Victor Poncelet, who wrote about it in 1822; [3] however, the triangular case was discovered significantly earlier, in 1746 by William Chapple. [4]

Contents

Poncelet's porism can be proved by an argument using an elliptic curve, whose points represent a combination of a line tangent to one conic and a crossing point of that line with the other conic.

Statement

Let C and D be two plane conics. If it is possible to find, for a given n > 2, one n-sided polygon that is simultaneously inscribed in C (meaning that all of its vertices lie on C) and circumscribed around D (meaning that all of its edges are tangent to D), then it is possible to find infinitely many of them. Each point of C or D is a vertex or tangency (respectively) of one such polygon.

If the conics are circles, the polygons that are inscribed in one circle and circumscribed about the other are called bicentric polygons, so this special case of Poncelet's porism can be expressed more concisely by saying that every bicentric polygon is part of an infinite family of bicentric polygons with respect to the same two circles. [5] :p. 94

Proof sketch

View C and D as curves in the complex projective plane P2. For simplicity, assume that C and D meet transversely (meaning that each intersection point of the two is a simple crossing). Then by Bézout's theorem, the intersection CD of the two curves consists of four complex points. For an arbitrary point d in D, let d be the tangent line to D at d. Let X be the subvariety of C × D consisting of (c,d) such that d passes through c. Given c, the number of d with (c,d) ∈ X is 1 if cCD and 2 otherwise. Thus the projection XCP1 presents X as a degree 2 cover ramified above 4 points, so X is an elliptic curve (once we fix a base point on X). Let be the involution of X sending a general (c,d) to the other point (c,d′) with the same first coordinate. Any involution of an elliptic curve with a fixed point, when expressed in the group law, has the form xpx for some p, so has this form. Similarly, the projection XD is a degree 2 morphism ramified over the contact points on D of the four lines tangent to both C and D, and the corresponding involution has the form xqx for some q. Thus the composition is a translation on X. If a power of has a fixed point, that power must be the identity. Translated back into the language of C and D, this means that if one point cC (equipped with a corresponding d) gives rise to an orbit that closes up (i.e., gives an n-gon), then so does every point. The degenerate cases in which C and D are not transverse follow from a limit argument.

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Parabolic coordinates</span>

Parabolic coordinates are a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal parabolas. A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas.

<span class="mw-page-title-main">Bipolar coordinates</span> 2-dimensional orthogonal coordinate system based on Apollonian circles

Bipolar coordinates are a two-dimensional orthogonal coordinate system based on the Apollonian circles. Confusingly, the same term is also sometimes used for two-center bipolar coordinates. There is also a third system, based on two poles.

<span class="mw-page-title-main">Symmetric space</span> A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

<span class="mw-page-title-main">Oval (projective plane)</span> Circle-like pointset in a geometric plane

In projective geometry an oval is a point set in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but there are many examples, both infinite and finite, of ovals in pappian planes which are not conics.

<span class="mw-page-title-main">Centre (geometry)</span> Middle of the object in geometry

In geometry, a centre or center of an object is a point in some sense in the middle of the object. According to the specific definition of centre taken into consideration, an object might have no centre. If geometry is regarded as the study of isometry groups, then a centre is a fixed point of all the isometries that move the object onto itself.

<span class="mw-page-title-main">Elliptic coordinate system</span> 2D coordinate system whose coordinate lines are confocal ellipses and hyperbolae

In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.

<span class="mw-page-title-main">Elliptic cylindrical coordinates</span>

Elliptic cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional elliptic coordinate system in the perpendicular -direction. Hence, the coordinate surfaces are prisms of confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.

<span class="mw-page-title-main">Plane stress</span> When the stress vector within a material is zero across a particular plane

In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2. A related notion, plane strain, is often applicable to very thick members.

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

<span class="mw-page-title-main">Bicentric polygon</span>

In geometry, a bicentric polygon is a tangential polygon which is also cyclic — that is, inscribed in an outer circle that passes through each vertex of the polygon. All triangles and all regular polygons are bicentric. On the other hand, a rectangle with unequal sides is not bicentric, because no circle can be tangent to all four sides.

<span class="mw-page-title-main">Steiner chain</span> Set of circles related by tangency

In geometry, a Steiner chain is a set of n circles, all of which are tangent to two given non-intersecting circles, where n is finite and each circle in the chain is tangent to the previous and next circles in the chain. In the usual closed Steiner chains, the first and last circles are also tangent to each other; by contrast, in open Steiner chains, they need not be. The given circles α and β do not intersect, but otherwise are unconstrained; the smaller circle may lie completely inside or outside of the larger circle. In these cases, the centers of Steiner-chain circles lie on an ellipse or a hyperbola, respectively.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Seven circles theorem</span> A chain of six circles tangent to a seventh circle and each to its 2 neighbors

In geometry, the seven circles theorem is a theorem about a certain arrangement of seven circles in the Euclidean plane. Specifically, given a chain of six circles all tangent to a seventh circle and each tangent to its two neighbors, the three lines drawn between opposite pairs of the points of tangency on the seventh circle all pass through the same point. Though elementary in nature, this theorem was not discovered until 1974.

<span class="mw-page-title-main">Pole and polar</span>

In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

Finding Ellipses: What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other is a mathematics book on "some surprising connections among complex analysis, geometry, and linear algebra", and on the connected ways that ellipses can arise from other subjects of study in all three of these fields. It was written by Ulrich Daepp, Pamela Gorkin, Andrew Shaffer, and Karl Voss, and published in 2019 by the American Mathematical Society and Mathematical Association of America as volume 34 of the Carus Mathematical Monographs, a series of books aimed at presenting technical topics in mathematics to a wide audience.

In Euclidean geometry, a triangle conic is a conic in the plane of the reference triangle and associated with it in some way. For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two sidelines of the reference triangle at vertices of the triangle.

References

  1. Weisstein, Eric W. "Poncelet's Porism." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html
  2. King, Jonathan L. (1994). "Three problems in search of a measure". Amer. Math. Monthly. 101: 609–628. doi:10.2307/2974690.
  3. Poncelet, Jean-Victor (1865) [1st. ed. 1822]. Traité des propriétés projectives des figures; ouvrage utile à ceux qui s'occupent des applications de la géométrie descriptive et d'opérations géométriques sur le terrain (in French) (2nd ed.). Paris: Gauthier-Villars. pp. 311–317.
  4. Del Centina, Andrea (2016), "Poncelet's porism: a long story of renewed discoveries, I", Archive for History of Exact Sciences , 70 (1): 1–122, doi:10.1007/s00407-015-0163-y, MR   3437893
  5. Johnson, Roger A., Advanced Euclidean Geometry, Dover Publications, 2007 (orig. 1960).