Pooling equilibrium

Last updated

A pooling equilibrium in game theory is an equilibrium outcome of a signaling game. [1] [2]

In a signaling game, players send actions called "signals" to other players. These signals are based on privately held information, which is not known to others in the game. [3] These actions do not reveal a player's "type" to other players, who then choose their strategies accordingly. In a pooling equilibrium, all types of a given sender send the same signal. Some senders represent their true type, while others correctly mimic the type of others, having no incentive to differentiate themselves. As a result, the receiver acts as if they have received no information, maximizing their utility according to their prior beliefs. [4]

See also

Related Research Articles

Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, used extensively in economics as well as in logic, systems science and computer science. Initially game theory addressed two-person zero-sum games, in which a participant's gains or losses are exactly balanced by the losses and gains of the other participant. In the 1950’s it was extended to the study of non zero-sum games and was eventually game applied to a wide range of behavioral relations, and is now an umbrella term for the science of rational decision making in humans, animals, as well as computers.

In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

<span class="mw-page-title-main">Signalling theory</span> Theory in evolutionary biology

Within evolutionary biology, signalling theory is a body of theoretical work examining communication between individuals, both within species and across species. The central question is when organisms with conflicting interests, such as in sexual selection, should be expected to provide honest signals rather than cheating. Mathematical models describe how signalling can contribute to an evolutionarily stable strategy.

In game theory, cheap talk is communication between players that does not directly affect the payoffs of the game. Providing and receiving information is free. This is in contrast to signalling, in which sending certain messages may be costly for the sender depending on the state of the world.

<span class="mw-page-title-main">Signaling game</span> Game class in game theory

In game theory, a signaling game is a simple type of a dynamic Bayesian game.

In game theory, a move, action, or ply is any one of the options which a player can choose in a setting where the optimal outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship.

A non-cooperative game is a form of game under the topic of game theory. Non-cooperative games are used in situations where there are competition between the players of the game. In this model, there are no external rules that enforces the cooperation of the players therefore it is typically used to model a competitive environment. This is stated in various accounts most prominent being John Nash's paper.

<span class="mw-page-title-main">Solution concept</span> Formal rule for predicting how a game will be played

In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

In game theory, an extensive-form game is a specification of a game allowing for the explicit representation of a number of key aspects, like the sequencing of players' possible moves, their choices at every decision point, the information each player has about the other player's moves when they make a decision, and their payoffs for all possible game outcomes. Extensive-form games also allow for the representation of incomplete information in the form of chance events modeled as "moves by nature". Extensive-form representations differ from normal-form in that they provide a more complete description of the game in question, whereas normal-form simply boils down the game into a payoff matrix.

In game theory, a Perfect Bayesian Equilibrium (PBE) is a solution with Bayesian probability to a turn-based game with incomplete information. More specifically, it is an equilibrium concept that uses Bayesian updating to describe player behavior in dynamic games with incomplete information. Perfect Bayesian equilibria are used to solve the outcome of games where players take turns but are unsure of the "type" of their opponent, which occurs when players don't know their opponent's preference between individual moves. A classic example of a dynamic game with types is a war game where the player is unsure whether their opponent is a risk-taking "hawk" type or a pacifistic "dove" type. Perfect Bayesian Equilibria are a refinement of Bayesian Nash equilibrium (BNE), which is a solution concept with Bayesian probability for non-turn-based games.

In game theory, a Bayesian game is a strategic decision-making model which assumes players have incomplete information. Players hold private information relevant to the game, meaning that the payoffs are not common knowledge. Bayesian games model the outcome of player interactions using aspects of Bayesian probability. They are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information.

In contract theory, signalling is the idea that one party credibly conveys some information about itself to another party.

<span class="mw-page-title-main">Sequential game</span> Class of games where players choose their actions sequentially

In game theory, a sequential game is a game where one player chooses their action before the others choose theirs. The other players must have information on the first player's choice so that the difference in time has no strategic effect. Sequential games are governed by the time axis and represented in the form of decision trees.

Backward induction is the process of determining a sequence of optimal choices by reasoning from the endpoint of a problem or situation back to its beginning using individual events or actions. Backward induction involves examining the final point in a series of decisions and identifying the most optimal process or action required to arrive at that point. This process continues backward until the best action for every possible point along the sequence is determined. Backward induction was first utilized in 1875 by Arthur Cayley, who discovered the method while attempting to solve the secretary problem.

In game theory, folk theorems are a class of theorems describing an abundance of Nash equilibrium payoff profiles in repeated games. The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria (SPE) of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept: subgame-perfect Nash equilibria rather than Nash equilibria.

<span class="mw-page-title-main">Auction theory</span> Branch of applied economics regarding the behavior of bidders in auctions

Auction theory is an branch of applied economics that deals with how bidders act in auctions and researches how the features of auctions incentivise predictable outcomes. Auction theory is a tool used to inform the design of real-world auctions. Sellers use auction theory to raise higher revenues while allowing buyers to procure at a lower cost. The confluence of the price between the buyer and seller is an economic equilibrium. Auction theorists design rules for auctions to address issues that can lead to market failure. The design of these rulesets encourages optimal bidding strategies in a variety of informational settings. The 2020 Nobel Prize for Economics was awarded to Paul R. Milgrom and Robert B. Wilson "for improvements to auction theory and inventions of new auction formats."

The intuitive criterion is a technique for equilibrium refinement in signaling games. It aims to reduce possible outcome scenarios by restricting the possible sender types to types who could obtain higher utility levels by deviating to off-the-equilibrium messages, and to types for which the off-the-equilibrium message is not equilibrium dominated.

<span class="mw-page-title-main">Lewis signaling game</span> Type of signaling game

In game theory, the Lewis signaling game is a type of signaling game that features perfect common interest between players. It is named for the philosopher David Lewis who was the first to discuss this game in his Ph.D. dissertation, and later book, Convention.

<span class="mw-page-title-main">Jean-François Mertens</span> Belgian game theorist (1946–2012)

Jean-François Mertens was a Belgian game theorist and mathematical economist.

References

  1. Ellison, Glenn. "Game Theory 14.122: Handout #l Finding PBE in Signaling Games", Microeconomic Theory II. MIT OpenCourseWare.
  2. pooling equilibrium. Oxford Reference. Retrieved 6 Feb. 2024.
  3. Bergstrom, Carl T.; Számadó, Szabolcs; Lachmann, Michael (2002-11-29). Johnstone, R. A.; Dall, S. R. X. (eds.). "Separating equilibria in continuous signalling games". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 357 (1427): 1595–1606. doi:10.1098/rstb.2002.1068. ISSN   0962-8436. PMC   1693066 . PMID   12495516.
  4. Sobel, Joel (2020), Sotomayor, Marilda; Pérez-Castrillo, David; Castiglione, Filippo (eds.), "Signaling Games", Complex Social and Behavioral Systems : Game Theory and Agent-Based Models, New York, NY: Springer US, pp. 251–268, doi:10.1007/978-1-0716-0368-0_481, ISBN   978-1-0716-0368-0 , retrieved 2024-06-30