Power center (geometry)

Last updated

The radical center (orange point) is the center of the unique circle (also orange) that intersects three given circles at right angles. Radical center.svg
The radical center (orange point) is the center of the unique circle (also orange) that intersects three given circles at right angles.

In geometry, the power center of three circles, also called the radical center, is the intersection point of the three radical axes of the pairs of circles. If the radical center lies outside of all three circles, then it is the center of the unique circle (the radical circle) that intersects the three given circles orthogonally; the construction of this orthogonal circle corresponds to Monge's problem. This is a special case of the three conics theorem.

Contents

The three radical axes meet in a single point, the radical center, for the following reason. The radical axis of a pair of circles is defined as the set of points that have equal power h with respect to both circles. For example, for every point P on the radical axis of circles 1 and 2, the powers to each circle are equal, h1 = h2. Similarly, for every point on the radical axis of circles 2 and 3, the powers must be equal, h2 = h3. Therefore, at the intersection point of these two lines, all three powers must be equal, h1 = h2 = h3. Since this implies that h1 = h3, this point must also lie on the radical axis of circles 1 and 3. Hence, all three radical axes pass through the same point, the radical center.

The radical center has several applications in geometry. It has an important role in a solution to Apollonius' problem published by Joseph Diaz Gergonne in 1814. In the power diagram of a system of circles, all of the vertices of the diagram are located at radical centers of triples of circles. The Spieker center of a triangle is the radical center of its excircles. [1] Several types of radical circles have been defined as well, such as the radical circle of the Lucas circles.

Notes

  1. Odenhal, Boris (2010), "Some triangle centers associated with the circles tangent to the excircles" (PDF), Forum Geometricorum, 10: 35–40

Further reading

Related Research Articles

<span class="mw-page-title-main">Sphere</span> Geometrical object that is the surface of a ball

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. It can be defined between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Coordinate system</span> System for determining the position of a point by a tuple of scalars

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the x-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.

<span class="mw-page-title-main">Altitude (triangle)</span> Perpendicular line segment from a triangles side to opposite vertex

In geometry, an altitude of a triangle is a line segment through a vertex and perpendicular to a line containing the base. This line containing the opposite side is called the extended base of the altitude. The intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude", is the distance between the extended base and the vertex. The process of drawing the altitude from the vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

<span class="mw-page-title-main">Orthocentric system</span> 4 planar points which are all orthocenters of triangles formed by the other 3


In geometry, an orthocentric system is a set of four points on a plane, one of which is the orthocenter of the triangle formed by the other three. Equivalently, the lines passing through disjoint pairs among the points are perpendicular, and the four circles passing through any three of the four points have the same radius.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.

<span class="mw-page-title-main">Arbelos</span> Plane region bounded by three semicircles

In geometry, an arbelos is a plane region bounded by three semicircles with three apexes such that each corner of each semicircle is shared with one of the others (connected), all on the same side of a straight line that contains their diameters.

<span class="mw-page-title-main">Hyperrectangle</span> Generalization of a rectangle for higher dimensions

In geometry, an orthotope is the generalization of a rectangle to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of intervals. If all of the edges are equal length, it is a hypercube.

<span class="mw-page-title-main">Radical axis</span> All points whose relative distances to two circles are equal

In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles. In detail:

<span class="mw-page-title-main">Power of a point</span> Relative distance of a point from a circle

In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826.

<span class="mw-page-title-main">Square tiling</span> Regular tiling of the Euclidean plane

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex.

<span class="mw-page-title-main">Apollonian circles</span> Circles in two perpendicular families

In geometry, Apollonian circles are two families (pencils) of circles such that every circle in the first family intersects every circle in the second family orthogonally, and vice versa. These circles form the basis for bipolar coordinates. They were discovered by Apollonius of Perga, a renowned Greek geometer.

<span class="mw-page-title-main">Spieker circle</span> Inscribed circle of a triangles medial triangle

In geometry, the incircle of the medial triangle of a triangle is the Spieker circle, named after 19th-century German geometer Theodor Spieker. Its center, the Spieker center, in addition to being the incenter of the medial triangle, is the center of mass of the uniform-density boundary of triangle. The Spieker center is also the point where all three cleavers of the triangle intersect each other.

<span class="mw-page-title-main">Johnson circles</span> Geometric theorem regarding 3 circles intersecting at a point

In geometry, a set of Johnson circles comprises three circles of equal radius r sharing one common point of intersection H. In such a configuration the circles usually have a total of four intersections : the common point H that they all share, and for each of the three pairs of circles one more intersection point. If any two of the circles happen to osculate, they only have H as a common point, and it will then be considered that H be their 2-wise intersection as well; if they should coincide we declare their 2-wise intersection be the point diametrically opposite H. The three 2-wise intersection points define the reference triangle of the figure. The concept is named after Roger Arthur Johnson.

<span class="mw-page-title-main">Homothetic center</span> Concept in geometry

In geometry, a homothetic center is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another. If the center is external, the two figures are directly similar to one another; their angles have the same rotational sense. If the center is internal, the two figures are scaled mirror images of one another; their angles have the opposite sense.

<span class="mw-page-title-main">Circle of antisimilitude</span>

In inversive geometry, the circle of antisimilitude of two circles, α and β, is a reference circle for which α and β are inverses of each other. If α and β are non-intersecting or tangent, a single circle of antisimilitude exists; if α and β intersect at two points, there are two circles of antisimilitude. When α and β are congruent, the circle of antisimilitude degenerates to a line of symmetry through which α and β are reflections of each other.

<span class="mw-page-title-main">Miquel's theorem</span> Concerns 3 circles through triples of points on the vertices and sides of a triangle

Miquel's theorem is a result in geometry, named after Auguste Miquel, concerning the intersection of three circles, each drawn through one vertex of a triangle and two points on its adjacent sides. It is one of several results concerning circles in Euclidean geometry due to Miquel, whose work was published in Liouville's newly founded journal Journal de mathématiques pures et appliquées.

In geometry, tangent circles are circles in a common plane that intersect in a single point. There are two types of tangency: internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the use of materials.

<span class="mw-page-title-main">Limiting point (geometry)</span>

In geometry, the limiting points of two disjoint circles A and B in the Euclidean plane are points p that may be defined by any of the following equivalent properties: