Power entry module

Last updated
A simple power entry module, the rectangular device below a red power switch in the photograph. This example consists of an IEC 60320 C14 inlet connector and fuse holder. The fuse is protected by a sliding plastic cover, which requires the power lead to be removed before it can be opened. Power entry module.jpg
A simple power entry module, the rectangular device below a red power switch in the photograph. This example consists of an IEC 60320 C14 inlet connector and fuse holder. The fuse is protected by a sliding plastic cover, which requires the power lead to be removed before it can be opened.

A power entry module (PEM) is an electromechanical component used in electrical appliances, integrating the appliance inlet with other components such as:

Advantages of a power entry module over individual components:

Power entry modules are used to save labor in manufacturing electrical and electronic equipment powered by an external source, such as the AC powerline. They are also quite compact, taking up a small amount of space on the equipment’s chassis, or printed circuit board.

Power entry modules frequently allow connections to the equipment circuitry using quick connect tab terminals, also known as blade connectors. An AC inlet connector allows use of a separate, detachable AC line cord that has the type of wall plug favored by the locality. IEC 60320 AC inlet connectors typically used can handle either 120 or 250 volts.

Since most power entry modules connect to the AC powerline, they are subject to safety standards set by Underwriters Laboratories (UL), the Canadian Standards Association (CSA), Verband der Elektrotechnik, Elektronik und Informationstechnik (VDE), and many other safety standards agencies such as the BSI Group (BSI). Power entry module manufacturers take on the responsibility of producing power entry module products in such a way that they meet the standards of one or more of these safety standard agencies, so that equipment manufacturers using them need not take responsibility for the internal details of safety certification. Power entry module manufacturers also pay independent testing labs to test their products against the safety standards, so that the products can carry the safety agency’s approval mark.

Typical AC power entry modules often have dielectric strengths of 2000 volts or more, and can handle currents of up to 10 to 20 amperes at 250 volts maximum. Exceeding the ratings can cause unsafe operation and must be avoided.

Medical devices can and do take advantage of power entry modules. Power entry modules are available with electromagnetic interference filters with very low leakage current ratings, even those suitable for direct patient contact in accordance with UL 544 and IEC 60601-1. Shock-safe fuseholders have also been integrated into power entry modules. These devices require a tool to remove the fuse for replacement.

DC (Direct current) power entry modules have been less common, but are finding popularity with equipment manufacturers, especially those that supply equipment in both AC- and DC-powered versions. The DC-powered versions of such equipment are frequently used in telephone exchange applications.

Power entry modules are also available rated as water resistant at IP65, with seal protection at the panel opening, around the fuse holders when provided, and between the inlet housing and connector pins.

See also

Related Research Articles

<span class="mw-page-title-main">British Standards</span> Standards produced by BSI Group

British Standards (BS) are the standards produced by the BSI Group which is incorporated under a royal charter and which is formally designated as the national standards body (NSB) for the UK. The BSI Group produces British Standards under the authority of the charter, which lays down as one of the BSI's objectives to:

Set up standards of quality for goods and services, and prepare and promote the general adoption of British Standards and schedules in connection therewith and from time to time to revise, alter and amend such standards and schedules as experience and circumstances require.

<span class="mw-page-title-main">DC connector</span> Electrical connector for carrying DC power

A DC connector is an electrical connector for supplying direct current (DC) power.

<span class="mw-page-title-main">IEC 60320</span> Set of standards for AC power connectors used on domestic appliances on the appliance side

IEC 60320 Appliance couplers for household and similar general purposes is a set of standards from the International Electrotechnical Commission (IEC) specifying non-locking connectors for connecting power supply cords to electrical appliances of voltage not exceeding 250 V (a.c.) and rated current not exceeding 16 A. Different types of connector are specified for different combinations of current, temperature and earthing requirements. Unlike IEC 60309 connectors, they are not coded for voltage; users must ensure that the voltage rating of the equipment is compatible with the mains supply. The standard uses the term coupler to encompass connectors on power cords and power inlets and outlets built into appliances.

<span class="mw-page-title-main">Surge protector</span> Protects electrical devices from voltage spikes

A surge protector (or spike suppressor, surge suppressor, surge diverter, surge protection device or transient voltage surge suppressor is an appliance or device intended to protect electrical devices from voltage spikes in alternating current circuits. A voltage spike is a transient event, typically lasting 1 to 30 microseconds, that may reach over 1,000 volts. Lightning that hits a power line can give a spike of over 100,000 volts and can burn through wiring insulation and cause fires, but even modest spikes can destroy a wide variety of electronic devices, computers, battery chargers, modems and TVs etc, that happen to be plugged in at the time. Typically the surge device will trigger at a set voltage, around 3 to 4 times the mains voltage, and divert the current to earth. Some devices may absorb the spike and release it as heat. They are generally rated according to the amount of energy in joules they can absorb.

<span class="mw-page-title-main">Power cord</span> Electrical cable that connects an appliance to the electricity supply via a wall socket

A power cord, line cord, or mains cable is an electrical cable that temporarily connects an appliance to the mains electricity supply via a wall socket or extension cord. The terms are generally used for cables using a power plug to connect to a single-phase alternating current power source at the local line voltage. The terms power cable, mains lead, flex or kettle lead are also used. A lamp cord is a light-weight, ungrounded, single-insulated two-wire cord used for small loads such as a table or floor lamp.

AC power plugs and sockets connect electric equipment to the alternating current (AC) mains electricity power supply in buildings and at other sites. Electrical plugs and sockets differ from one another in voltage and current rating, shape, size, and connector type. Different standard systems of plugs and sockets are used around the world.

Appliance classes specify measures to prevent dangerous contact voltages on unenergized parts, such as the metallic casing, of an electronic device. In the electrical appliance manufacturing industry, the following appliance classes are defined in IEC 61140 and used to differentiate between the protective-earth connection requirements of devices.

<span class="mw-page-title-main">IEC 60309</span> International standard for industrial plugs

IEC 60309 is a series of international standards from the International Electrotechnical Commission (IEC) for "plugs, socket-outlets and couplers for industrial purposes". They are also referred to as "pin & sleeve" connectors in North America or as "CeeForm" connectors in the entertainment industry. The maximum voltage allowed by the standard is 1000 V DC or AC; the maximum current, 800 A; and the maximum frequency, 500 Hz. The ambient temperature range is −25 °C to 40 °C.

Electrical wiring in the United Kingdom is commonly understood to be an electrical installation for operation by end users within domestic, commercial, industrial, and other buildings, and also in special installations and locations, such as marinas or caravan parks. It does not normally cover the transmission or distribution of electricity to them.

<span class="mw-page-title-main">AC adapter</span> Type of external power supply

An AC adapter or AC/DC adapter is a type of external power supply, often enclosed in a case similar to an AC plug. Other common names include wall wart, power brick, wall charger, and power adapter. Adapters for battery-powered equipment may be described as chargers or rechargers. AC adapters are used with electrical devices that require power but do not contain internal components to derive the required voltage and power from mains power. The internal circuitry of an external power supply is very similar to the design that would be used for a built-in or internal supply.

<span class="mw-page-title-main">Extra-low voltage</span> Electrical standard designed to protect against electric shock

Extra-low voltage (ELV) is an electricity supply voltage and is a part of the Low voltage band in a range which carries a low risk of dangerous electrical shock. There are various standards that define extra-low voltage. The International Electrotechnical Commission (IEC) and the UK IET define an ELV device or circuit as one in which the electrical potential between two conductors or between an electrical conductor and earth (ground) does not exceed 50 V AC or 120 V DC.

<span class="mw-page-title-main">NEMA connector</span> Power plugs and receptacles used in North America and some other regions

NEMA connectors are power plugs and receptacles used for AC mains electricity in North America and other countries that use the standards set by the US National Electrical Manufacturers Association. NEMA wiring devices are made in current ratings from 15 to 60 amperes (A), with voltage ratings from 125 to 600 volts (V). Different combinations of contact blade widths, shapes, orientations, and dimensions create non-interchangeable connectors that are unique for each combination of voltage, electric current carrying capacity, and grounding system.

<span class="mw-page-title-main">Charging station</span> Installation for charging electric vehicles

A charging station, also known as a charge point or electric vehicle supply equipment (EVSE), is a power supply device that supplies electrical power for recharging plug-in electric vehicles.

<span class="mw-page-title-main">SAE J1772</span> Electric vehicle charging connector in North America

SAE J1772, also known as a J plug or Type 1 connector after its international standard, IEC 62196 Type 1, is a North American standard for electrical connectors for electric vehicles maintained by SAE International under the formal title "SAE Surface Vehicle Recommended Practice J1772, SAE Electric Vehicle Conductive Charge Coupler".

<span class="mw-page-title-main">IEC 62196</span> International standards for vehicle charging technology

IEC 62196Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles is a series of international standards that define requirements and tests for plugs, socket-outlets, vehicle connectors and vehicle inlets for conductive charging of electric vehicles and is maintained by the technical subcommittee SC 23H “Plugs, Socket-outlets and Couplers for industrial and similar applications, and for Electric Vehicles” of the International Electrotechnical Commission (IEC).

<span class="mw-page-title-main">AC power plugs and sockets: British and related types</span> AC power plug type

Plugs and sockets for electrical appliances not hardwired to mains electricity originated in the United Kingdom in the 1870s and were initially two-pin designs. These were usually sold as a mating pair, but gradually de facto and then official standards arose to enable the interchange of compatible devices. British standards have proliferated throughout large parts of the former British Empire.

<span class="mw-page-title-main">Type 2 connector</span> Electric vehicle charging connector in Europe

The IEC 62196 Type 2 connector is used for charging electric vehicles, mainly within Europe, as it was declared standard by the EU. Based on widespread red IEC 60309 three phase plugs with five pins, which come in different diameters according to maximum current, a single size was selected, as maximum possible power will be communicated to the car via two additional communication pins and by a simple resistor coding within the cable. The onboard charger inside the car has to limit the current accordingly.

<span class="mw-page-title-main">SAE J3068</span>

SAE J3068 "Electric Vehicle Power Transfer System Using a Three-Phase Capable Coupler" is a North American recommended practice published and maintained by SAE International. J3068 defines electrical connectors and a control protocol for electric vehicles. It has the formal title "SAE Surface Vehicle Recommended Practice J3068". J3068 defines a system of conductive power transfer to an electric vehicle using a coupler capable of transferring single-phase and three-phase AC power as well as DC power, and defines a digital communication system for control. J3068 also specifies requirements for the vehicle inlet, supply equipment connector, mating housings and contacts.