Prakash Belkale

Last updated

Prakash Belkale (born May 1973, Bangalore) is an Indian-American mathematician, specializing in algebraic geometry and representation theory. [1] [2]

Contents

Education and career

Belkale received his Ph.D. in 1999 from the University of Chicago with thesis advisor Madhav Nori. [3]

In 2003, together with Patrick Brosnan, Belkale disproved Maxim Kontsevich's Spanning-Tree Conjecture (first published in 1997). [4]

Let G be a finite connected graph. The Kirchhoff polynomial of G is a certain homogeneous polynomial whose degree is equal to the first betti number of G. These polynomials appear in the study of electrical circuits and in the evaluation of Feynman amplitudes. Motivated by work of D. Kreimer and D. J. Broadhurst associating multiple zeta values to certain Feynman integrals, Kontsevich conjectured that the number of zeros of a Kirchhoff polynomial over the field with q elements is always a polynomial function of q. We show that this conjecture is false by relating the schemes defined by Kirchhoff polynomials to the representation spaces of matroids. Moreover, using Mnev's universality theorem, we show that these schemes essentially generate all arithmetic of schemes of finite type over the integers. [4]

Belkale works on enumerative algebraic geometry, quantum cohomology and moduli spaces of vector bundles on curves (conformal blocks and strange duality), and the Schubert calculus and its connections to intersection theory and representation theory. He is a professor at the University of North Carolina at Chapel Hill.

In 2010 he was an invited speaker at the International Congress of Mathematicians in Hyderabad and gave a talk The tangent space to an enumerative problem. In December 2014 he was elected a Fellow of the American Mathematical Society.

Selected publications

Related Research Articles

<span class="mw-page-title-main">Hodge conjecture</span> Unsolved problem in geometry

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index.

<span class="mw-page-title-main">Tropical geometry</span> Skeletonized version of algebraic geometry

In mathematics, tropical geometry is the study of polynomials and their geometric properties when addition is replaced with minimization and multiplication is replaced with ordinary addition:

Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory.

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

In mathematics, the Grothendieck–Katz p-curvature conjecture is a local-global principle for linear ordinary differential equations, related to differential Galois theory and in a loose sense analogous to the result in the Chebotarev density theorem considered as the polynomial case. It is a conjecture of Alexander Grothendieck from the late 1960s, and apparently not published by him in any form.

In mathematics, in particular algebraic topology, a p-compact group is a homotopical version of a compact Lie group, but with all the local structure concentrated at a single prime p. This concept was introduced in Dwyer & Wilkerson (1994), making precise earlier notions of a mod p finite loop space. A p-compact group has many Lie-like properties like maximal tori and Weyl groups, which are defined purely homotopically in terms of the classifying space, but with the important difference that the Weyl group, rather than being a finite reflection group over the integers, is now a finite p-adic reflection group. They admit a classification in terms of root data, which mirrors the classification of compact Lie groups, but with the integers replaced by the p-adic integers.

<span class="mw-page-title-main">Period (algebraic geometry)</span> Numbers expressible as integrals of algebraic functions

In mathematics, specifically algebraic geometry, a period or algebraic period is a complex number that can be expressed as an integral of an algebraic function over an algebraic domain. The periods are a class of numbers which includes, alongside the algebraic numbers, many well known mathematical constants such as the number π. Sums and products of periods remain periods, such that the periods form a ring.

Daqing Wan is a Chinese mathematician working in the United States. He received his Ph.D. from the University of Washington in Seattle in 1991, under the direction of Neal Koblitz. Since 1997, he has been on the faculty of mathematics at the University of California at Irvine; he has also held visiting positions at the Institute for Advanced Study in Princeton, New Jersey, Pennsylvania State University, the University of Rennes, the Mathematical Sciences Research Institute in Berkeley, California, and the Chinese Academy of Sciences in Beijing.

In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by Quillen, who was inspired by earlier conjectures of Lichtenbaum (1973). Kahn (1997) and Rognes & Weibel (2000) proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes.

<span class="mw-page-title-main">Alexander Merkurjev</span> Russian American mathematician (born 1955)

Aleksandr Sergeyevich Merkurjev is a Russian-American mathematician, who has made major contributions to the field of algebra. Currently Merkurjev is a professor at the University of California, Los Angeles.

In mathematics, specifically algebraic geometry, Donaldson–Thomas theory is the theory of Donaldson–Thomas invariants. Given a compact moduli space of sheaves on a Calabi–Yau threefold, its Donaldson–Thomas invariant is the virtual number of its points, i.e., the integral of the cohomology class 1 against the virtual fundamental class. The Donaldson–Thomas invariant is a holomorphic analogue of the Casson invariant. The invariants were introduced by Simon Donaldson and Richard Thomas. Donaldson–Thomas invariants have close connections to Gromov–Witten invariants of algebraic three-folds and the theory of stable pairs due to Rahul Pandharipande and Thomas.

<span class="mw-page-title-main">Christopher Deninger</span> German mathematician (born 1958)

Christopher Deninger is a German mathematician at the University of Münster. Deninger's research focuses on arithmetic geometry, including applications to L-functions.

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

<span class="mw-page-title-main">Kari Vilonen</span> Finnish mathematician (born 1955)

Kari Kaleva Vilonen is a Finnish mathematician, specializing in geometric representation theory. He is currently a professor at the University of Melbourne.

<span class="mw-page-title-main">Thomas Schick</span> German mathematician

Thomas Schick is a German mathematician, specializing in algebraic topology and differential geometry.

Henri Moscovici is a Romanian-American mathematician, specializing in non-commutative geometry and global analysis.

Ivan Vadzimavich Loseu is a Belarusian-American mathematician, specializing in representation theory, symplectic geometry, algebraic geometry, and combinatorial algebra.

<span class="mw-page-title-main">Alexander A. Voronov</span> Russian-American mathematician

Alexander A. Voronov is a Russian-American mathematician specializing in mathematical physics, algebraic topology, and algebraic geometry. He is currently a Professor of Mathematics at the University of Minnesota and a Visiting Senior Scientist at the Kavli Institute for the Physics and Mathematics of the Universe.

References

  1. Brion, Michel (2011). Restriction de représentations et projection d'orbites coadjointes, d'après Belkale, Kumar et Ressayre. Bourbaki Seminar 1043.
  2. Christian Pauly (2008). La dualité étrange, d'après P. Belkale, A. Marian et D. Oprea. Bourbaki Seminar 994.
  3. Prakash Belkale at the Mathematics Genealogy Project
  4. 1 2 Belkale, Prakash; Brosnan, Patrick (2003). "Matroids, motives and a conjecture of Kontsevich". Duke Mathematical Journal . 116 (1): 1–188. arXiv: math/0012198 . doi:10.1215/s0012-7094-03-11615-4. S2CID   7966214.