In computer science, priority inversion is a scenario in scheduling in which a high-priority task is indirectly superseded by a lower-priority task, effectively inverting the assigned priorities of the tasks. This violates the priority model that high-priority tasks can only be prevented from running by higher-priority tasks. Inversion occurs when there is a resource contention with a low-priority task that is then preempted by a medium-priority task.
Consider two tasks H and L, of high and low priority respectively, either of which can acquire exclusive use of a shared resource R. If H attempts to acquire R after L has acquired it, then H becomes blocked until L relinquishes the resource. Sharing an exclusive-use resource (R in this case) in a well-designed system typically involves L relinquishing R promptly so that H (a higher-priority task) does not stay blocked for excessive periods of time. Despite good design, however, it is possible that a third task M of medium priority becomes runnable during L's use of R. At this point, M being higher in priority than L, preempts L (since M does not depend on R), causing L to not be able to relinquish R promptly, in turn causing H—the highest-priority process—to be unable to run (that is, H suffers unexpected blockage indirectly caused by lower-priority tasks like M).
In some cases, priority inversion can occur without causing immediate harm—the delayed execution of the high-priority task goes unnoticed, and eventually, the low-priority task releases the shared resource. However, there are also many situations in which priority inversion can cause serious problems. If the high-priority task is left starved of the resources, it might lead to a system malfunction or the triggering of pre-defined corrective measures, such as a watchdog timer resetting the entire system. The trouble experienced by the Mars Pathfinder lander in 1997 [1] [2] is a classic example of problems caused by priority inversion in realtime systems.
Priority inversion can also reduce the perceived performance of the system. Low-priority tasks usually have a low priority because it is not important for them to finish promptly (for example, they might be a batch job or another non-interactive activity). Similarly, a high-priority task has a high priority because it is more likely to be subject to strict time constraints—it may be providing data to an interactive user, or acting subject to real-time response guarantees. Because priority inversion results in the execution of a lower-priority task blocking the high-priority task, it can lead to reduced system responsiveness or even the violation of response time guarantees.
A similar problem called deadline interchange can occur within earliest deadline first scheduling (EDF).
The existence of this problem has been known since the 1970s. Lampson and Redell [3] published one of the first papers to point out the priority inversion problem. Systems such as the UNIX kernel were already addressing the problem with the splx() primitive. There is no foolproof method to predict the situation. There are however many existing solutions, of which the most common ones are:
A real-time operating system (RTOS) is an operating system (OS) for real-time computing applications that processes data and events that have critically defined time constraints. An RTOS is distinct from a time-sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in multitasking or multiprogramming environments. All operations must verifiably complete within given time and resource constraints or else fail safe. Real-time operating systems are event-driven and preemptive, meaning the OS can monitor the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts.
In computer science, mutual exclusion is a property of concurrency control, which is instituted for the purpose of preventing race conditions. It is the requirement that one thread of execution never enters a critical section while a concurrent thread of execution is already accessing said critical section, which refers to an interval of time during which a thread of execution accesses a shared resource or shared memory.
In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.
In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed depending on programmer-defined conditions.
In computer science, rate-monotonic scheduling (RMS) is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority.
In computer science, a lock or mutex is a synchronization primitive that prevents state from being modified or accessed by multiple threads of execution at once. Locks enforce mutual exclusion concurrency control policies, and with a variety of possible methods there exist multiple unique implementations for different applications.
In software engineering, a spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop ("spin") while repeatedly checking whether the lock is available. Since the thread remains active but is not performing a useful task, the use of such a lock is a kind of busy waiting. Once acquired, spinlocks will usually be held until they are explicitly released, although in some implementations they may be automatically released if the thread being waited on blocks or "goes to sleep".
DragonFly BSD is a free and open-source Unix-like operating system forked from FreeBSD 4.8. Matthew Dillon, an Amiga developer in the late 1980s and early 1990s and FreeBSD developer between 1994 and 2003, began working on DragonFly BSD in June 2003 and announced it on the FreeBSD mailing lists on 16 July 2003.
RTLinux is a hard realtime real-time operating system (RTOS) microkernel that runs the entire Linux operating system as a fully preemptive process. The hard real-time property makes it possible to control robots, data acquisition systems, manufacturing plants, and other time-sensitive instruments and machines from RTLinux applications. The design was patented. Despite the similar name, it is not related to the Real-Time Linux project of the Linux Foundation.
In computer science, resource starvation is a problem encountered in concurrent computing where a process is perpetually denied necessary resources to process its work. Starvation may be caused by errors in a scheduling or mutual exclusion algorithm, but can also be caused by resource leaks, and can be intentionally caused via a denial-of-service attack such as a fork bomb.
In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003.
In real-time computing, priority inheritance is a method for eliminating unbounded priority inversion. Using this programming method, a process scheduling algorithm increases the priority of a process (A) to the maximum priority of any other process waiting for any resource on which A has a resource lock.
In computer science, serializing tokens are a concept in concurrency control arising from the ongoing development of DragonFly BSD. According to Matthew Dillon, they are most akin to SPLs, except a token works across multiple CPUs while SPLs only work within a single CPU's domain.
In real-time computing, the priority ceiling protocol is a synchronization protocol for shared resources to avoid unbounded priority inversion and mutual deadlock due to wrong nesting of critical sections. In this protocol each resource is assigned a priority ceiling, which is a priority equal to the highest priority of any task which may lock the resource. The protocol works by temporarily raising the priorities of tasks in certain situations, thus it requires a scheduler that supports dynamic priority scheduling.
In concurrent programming, a monitor is a synchronization construct that prevents threads from concurrently accessing a shared object's state and allows them to wait for the state to change. They provide a mechanism for threads to temporarily give up exclusive access in order to wait for some condition to be met, before regaining exclusive access and resuming their task. A monitor consists of a mutex (lock) and at least one condition variable. A condition variable is explicitly 'signalled' when the object's state is modified, temporarily passing the mutex to another thread 'waiting' on the conditional variable.
In computing, preemption is the act of temporarily interrupting an executing task, with the intention of resuming it at a later time. This interrupt is done by an external scheduler with no assistance or cooperation from the task. This preemptive scheduler usually runs in the most privileged protection ring, meaning that interruption and then resumption are considered highly secure actions. Such changes to the currently executing task of a processor are known as context switching.
In computer science, a readers–writer is a synchronization primitive that solves one of the readers–writers problems. An RW lock allows concurrent access for read-only operations, whereas write operations require exclusive access. This means that multiple threads can read the data in parallel but an exclusive lock is needed for writing or modifying data. When a writer is writing the data, all other writers and readers will be blocked until the writer is finished writing. A common use might be to control access to a data structure in memory that cannot be updated atomically and is invalid until the update is complete.
In computer science, synchronization is the task of coordinating multiple processes to join up or handshake at a certain point, in order to reach an agreement or commit to a certain sequence of action.
DioneOS is a multitasking preemptive, real-time operating system (RTOS). The system is designed for microcontrollers, originally released on 2 February 2011 for the Texas Instruments TI MSP430x, and then on 29 March 2013 for the ARM Cortex-M3. Target microcontroller platforms have limited resources, i.e., system clock frequency of tens of MHz, and memory amounts of tens to a few hundred kilobytes (KB). The RTOS is adapted to such conditions by providing a compact and efficient image. The efficiency term here means minimizing further central processing unit (CPU) load caused by system use. According to this definition, the system is more effective when it consumes less CPU time to execute its internal parts, e.g., managing threads.
Random boosting is a strategy used by the scheduler in Microsoft Windows to avoid deadlock due to priority inversion. Ready threads holding locks are randomly boosted in priority and allowed to run long enough to exit the critical section. If the thread doesn't get enough time to release the lock, it will get another chance.
Windows NT solves the priority inversion problem by randomly boosting the dynamic priorities of threads that are ready to run.