Production tubing

Last updated

Production tubing is a tube used in a wellbore through which production fluids are produced (travel).

Contents

Background

Production tubing is run into the drilled well after the casing is run and cemented in place. Production tubing protects wellbore casing from wear, tear, corrosion, and deposition of by-products, such as sand / silt, paraffins, and asphaltenes. Along with other components that constitute the production string, it provides a continuous bore from the production zone to the wellhead through which oil and gas can be produced. It is usually between five and ten centimeters in diameter and is held inside the casing through the use of expandable packing devices. Purpose and design of production tubing is to enable quick, efficient, and safe installation, removal and re-installation.

If there is more than one zone of production in the well, up to four lines of production tubing can be run.

Production casing

Production casing is the final casing string set in a well and usually reaches from the surface to Target Depth (TD). The type of casing used depends upon the different conditions in the well. Commonly, production casing sizes range from 4+12 in (110 mm) to as large as 9+58 in (240 mm). It is the last string cemented in a well unless a production liner is run. This casing isolates production in the well so that different intervals can be selectively perforated and produced. Usually, the lower zones of production are perforated first. The formations are depleted, those perforations are squeezed with cement and the casing perforated above the original perforations. The production is usually brought to the surface through tubing. Tubing is a smaller diameter pipe that is run inside of the production casing. A packer is usually set at the lower end of the casing to prevent formation fluid from entering the annulus between the tubing and the casing. A packer is an elastomer cylinder that forms a pressure seal between the tubing and the casing. Obviously, good cement placement is required in the production interval. Flow behind the casing from the production zone to a barren formation can prevent production of a large quantity of hydrocarbon.

Production liner

A production liner is a string of casing set across a production interval but does not extend all the way back the surface. Usually there is about a 500 ft (150 m) (more or less) overlap between a liner and the casing string above. The production liner has the same function as a complete string of production casing. A typical casing arrangement in a well is shown in the diagram below. In this case, the surface casing is set to a depth of about 3,000 ft (910 m). Two intermediate strings are set in this well — a 13+38 in (340 mm) string and a 9+78 in (250 mm) string. A 7+58 in (190 mm) production casing is set at a depth of about 15,000 ft (4,600 m) and a 5 in (130 mm) production liner set to TD. Probably, this well required a high mud weight at the bottom of the hole and cementing the 7+58 in (190 mm) casing at TD would have resulted in too much pressure and lost circulation. If lost circulation occurs during a primary cement job, there is little guarantee that cement will fill the designated volume behind the casing. This will require the casing be perforated and cement squeezed into the casing/well bore annulus.

Production Liner Production Liner.jpg
Production Liner

See also

Related Research Articles

<span class="mw-page-title-main">Oil well</span> Well drilled to extract crude oil and/or gas

An oil well is a drillhole boring in Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve that is then mounted with an extraction device such as a pumpjack which allows extraction from the reserve. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in hard to reach areas, e.g., when creating offshore oil platforms. The process of modern drilling for wells first started in the 19th century, but was made more efficient with advances to oil drilling rigs during the 20th century.

<span class="mw-page-title-main">Wireline (cabling)</span> Technology used in oil and gas wells

In the oil and gas industry, the term wireline usually refers to the use of multi-conductor, single conductor or slickline cable, or "wireline", as a conveyance for the acquisition of subsurface petrophysical and geophysical data and the delivery of well construction services such as pipe recovery, perforating, plug setting and well cleaning and fishing. The subsurface geophysical and petrophysical information results in the description and analysis of subsurface geology, reservoir properties and production characteristics.

<span class="mw-page-title-main">Pumpjack</span> Drive for a reciprocating piston pump in an oil well

A pumpjack is the overground drive for a reciprocating piston pump in an oil well.

<span class="mw-page-title-main">Casing hanger</span>

In petroleum production, the casing hanger is that portion of a wellhead assembly which provides support for the casing string when it is lowered into the wellbore. It serves to ensure that the casing is properly located. When the casing string has been run into the wellbore it is hung off, or suspended, by a casing hanger, which rests on a landing shoulder inside the casing spool. Casing hangers must be designed to take the full weight of the casing, and provide a seal between the casing hanger and the spool.

Well control is the technique used in oil and gas operations such as drilling, well workover and well completion for maintaining the hydrostatic pressure and formation pressure to prevent the influx of formation fluids into the wellbore. This technique involves the estimation of formation fluid pressures, the strength of the subsurface formations and the use of casing and mud density to offset those pressures in a predictable fashion. Understanding pressure and pressure relationships is important in well control.

<span class="mw-page-title-main">Casing (borehole)</span>

Casing is a large diameter pipe that is assembled and inserted into a recently drilled section of a borehole. Similar to the bones of a spine protecting the spinal cord, casing is set inside the drilled borehole to protect and support the wellstream. The lower portion is typically held in place with cement. Deeper strings usually are not cemented all the way to the surface, so the weight of the pipe must be partially supported by a casing hanger in the wellhead.

In drilling technology, casing string is a long section of connected oilfield pipe that is lowered into a wellbore and cemented. The purpose of the casing pipe is as follows:

Artificial lift refers to the use of artificial means to increase the flow of liquids, such as crude oil or water, from a production well. Generally this is achieved by the use of a mechanical device inside the well or by decreasing the weight of the hydrostatic column by injecting gas into the liquid some distance down the well. A newer method called Continuous Belt Transportation (CBT) uses an oil absorbing belt to extract from marginal and idle wells. Artificial lift is needed in wells when there is insufficient pressure in the reservoir to lift the produced fluids to the surface, but often used in naturally flowing wells to increase the flow rate above what would flow naturally. The produced fluid can be oil, water or a mix of oil and water, typically mixed with some amount of gas.

<span class="mw-page-title-main">Coiled tubing</span> Long metal pipe used in oil and gas wells

In the oil and gas industry, coiled tubing refers to a long metal pipe, normally 1 to 3.25 in in diameter which is supplied spooled on a large reel. It is used for interventions in oil and gas wells and sometimes as production tubing in depleted gas wells. Coiled tubing is often used to carry out operations similar to wirelining. The main benefits over wireline are the ability to pump chemicals through the coil and the ability to push it into the hole rather than relying on gravity. Pumping can be fairly self-contained, almost a closed system, since the tube is continuous instead of jointed pipe. For offshore operations, the 'footprint' for a coiled tubing operation is generally larger than a wireline spread, which can limit the number of installations where coiled tubing can be performed and make the operation more costly. A coiled tubing operation is normally performed through the drilling derrick on the oil platform, which is used to support the surface equipment, although on platforms with no drilling facilities a self-supporting tower can be used instead. For coiled tubing operations on sub-sea wells a mobile offshore drilling unit (MODU) e.g. semi-submersible, drillship etc. has to be utilized to support all the surface equipment and personnel, whereas wireline can be carried out from a smaller and cheaper intervention vessel. Onshore, they can be run using smaller service rigs, and for light operations a mobile self-contained coiled tubing rig can be used.

A production packer is a standard component of the completion hardware of oil or gas wells used to provide a seal between the outside of the production tubing and the inside of the casing, liner, or wellbore wall.

Slickline refers to a single strand wire which is used to run a variety of tools down into the wellbore for several purposes. It is used during well drilling operations in the oil and gas industry. In general, it can also describe a niche of the industry that involves using a slickline truck or doing a slickline job. Slickline looks like a long, smooth, unbraided wire, often shiny, silver/chrome in appearance. It comes in varying lengths, according to the depth of wells in the area it is used up to 35,000 feet in length. It is used to lower and raise downhole tools used in oil and gas well maintenance to the appropriate depth of the drilled well.

A perforation in the context of oil wells refers to a hole punched in the casing or liner of an oil well to connect it to the reservoir. It creates a channel between the pay zone and the wellbore to cause oil and gas to flow to the wellbore easily. In cased hole completions, the well will be drilled down past the section of the formation desired for production and will have casing or a liner run in separating the formation from the well bore. The final stage of the completion will involve running in perforating guns, a string of shaped charges, down to the desired depth and firing them to perforate the casing or liner. A typical perforating gun can carry many dozens of explosive charges.

A well kill is the operation of placing a column of special fluids of the required density into a well bore in order to prevent the flow of reservoir fluids without the need for pressure control equipment at the surface. It works on the principle that the hydrostatic head of the "kill fluid" or "kill mud" will be enough to suppress the pressure of the formation fluids. Well kills may be planned in the case of advanced interventions such as workovers, or be contingency operations. The situation calling for a well kill will dictate the method taken.

<span class="mw-page-title-main">Completion (oil and gas wells)</span> Last operation for oil and gas wells

Well completion is the process of making a well ready for production after drilling operations. This principally involves preparing the bottom of the hole to the required specifications, running in the production tubing and its associated down hole tools as well as perforating and stimulating as required. Sometimes, the process of running in and cementing the casing is also included. After a well has been drilled, should the drilling fluids be removed, the well would eventually close in upon itself. Casing ensures that this will not happen while also protecting the wellstream from outside incumbents, like water or sand.

Oilfield terminology refers to the jargon used by those working in fields within and related to the upstream segment of the petroleum industry. It includes words and phrases describing professions, equipment, and procedures specific to the industry. It may also include slang terms used by oilfield workers to describe the same.

Squeeze job, or squeeze cementing is a term often used in the oilfield to describe the process of injecting cement slurry into a zone, generally for pressure-isolation purposes.

Oil Well Cementing Equipment are essential for the Oil/Gas exploration or production wells and are a must used oilfield equipments while drilling a well.

Oil well control is the management of the dangerous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation gas or fluid (hydrocarbons), usually referred to as kick, from entering into the wellbore during drilling or well interventions.

<span class="mw-page-title-main">Pipe recovery operations</span>

Pipe recovery is a specific wireline operation used in the oil and gas industry, when the drill string becomes stuck downhole. Stuck pipe prevents the drill rig from continuing operations. This results in costly downtime, ranging anywhere from $10,000-1,000,000 per day of downtime, therefore it is critical to resolve the problem as quickly as possible. Pipe recovery is the process by which the location of the stuck pipe is identified, and the free pipe is separated from the stuck pipe either by a backoff or a chemical cut. This allows fishing tools to subsequently be run down hole to latch onto and remove the stuck pipe.

References