Projection keyboard

Last updated
A projection keyboard ProjectionKeyboard 2.jpg
A projection keyboard

A projection keyboard is a form of computer input device whereby the image of a virtual keyboard is projected onto a surface: when a user touches the surface covered by an image of a key, the device records the corresponding keystroke. Some connect to Bluetooth devices, including many of the latest smartphone, tablet, and mini-PC devices with Android, iOS or Windows operating system.

Contents

History

An optical virtual keyboard was invented and patented by IBM engineers in 1992. [1] It optically detects and analyses human hand and finger motions and interprets them as operations on a physically non-existent input device like a surface with painted or projected keys. In that way, it can emulate unlimited types of manually operated input devices (such as a mouse, keyboard, and other devices). Mechanical input units can be replaced by such virtual devices, potentially optimized for a specific application and for the user's physiology, maintaining speed, simplicity, and unambiguity of manual data input.

In 2002, start-up company Canesta developed a projection keyboard using their proprietary "electronic perception technology." [2] [3] [4] The company subsequently licensed the technology to Celluon of Korea. [5]

A proposed system called the P-ISM combines the technology with a small video projector to create a portable computer the size of a fountain pen. [6]

Design

A laser projection keyboard used with a tablet Laser-keyboard.jpg
A laser projection keyboard used with a tablet

A laser or beamer projects visible virtual keyboard onto level surface. It is a modern input device. A sensor or camera in the projector picks up finger movements. Software converts the coordinates to identify actions or characters. [1]

Some devices project a second (invisible infrared) beam above the virtual keyboard. The user's finger makes a keystroke on the virtual keyboard. This breaks the infrared beam and reflects light back to the projector. The reflected beam passes through an infrared filter to the camera. The camera photographs the angle of incoming infrared light. The sensor chip determines where infrared beam was broken. Software determines the action or character to be generated.

The projection is realized in four main steps and via three modules: projection module, sensor module and illumination module. The main devices and technologies used to project the image are a diffractive optical element, red laser diode, CMOS sensor chip and an infrared (IR) laser diode.

Template projection

A template produced by a specially designed and highly efficient projection element with a red diode laser is projected onto the adjacent interface surface. [7] The template is not however involved in the detection process.

Reference plane illumination

An infra-red plane of light is generated on the interface surface. The plane is however situated just above and parallel to the surface. The light is invisible to the user and hovers a few millimeters above the surface. When a key position is touched on the surface interface, the light is reflected from the infra-red plane in the vicinity of the key and directed towards the sensor module.

Map reflection coordinates

The reflected light user interactions with the interface surface is passed through an infra-red filter and imaged on to a CMOS image sensor in the sensor module. The sensor chip has a custom hardware embedded such as the Virtual Interface Processing Core and it is capable of making a real-time determination of the location from where the light was reflected. The processing core may track not only one, but multiple light reflections at the same time and it can support multiple keystrokes and overlapping cursor control inputs.

Interpretation and communication

The micro-controller in the sensor module receives the positional information corresponding to the light flashes from the sensor processing core, interprets the events and then communicates them through the appropriate interface to external devices. By events it is understood any key stroke, mouse or touchpad control.

Most projection keyboards use a red diode laser as a light source and may project a full size QWERTY keyboard. The projected keyboard size is usually 295 mm x 95 mm and it is projected at a distance of 60 mm from the virtual keyboard unit. The projection keyboard detects up to 400 characters per minute.

Connectivity

Projection keyboards connect to the computer either through Bluetooth or USB.

Bluetooth dongle technology enables the projection keyboard for point to multi-point connectivity with other Bluetooth devices, such as PCs, PDAs and mobile phone.

The way that Bluetooth projection keyboards connect to devices depends on the specific tablet, phone or computer.

Alternative uses

Apart from simply being used to type, some laser keyboard systems can function as a virtual mouse or even as a virtual piano, such as the crowd-funded iKeybo. [8]

Related Research Articles

<span class="mw-page-title-main">Computer mouse</span> Pointing device used to control a computer

A computer mouse is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer on a display, which allows a smooth control of the graphical user interface of a computer.

<span class="mw-page-title-main">Keyboard technology</span> Hardware technology of keyboards

The technology of computer keyboards includes many elements. Many different keyboard technologies have been developed for consumer demands and optimized for industrial applications. The standard full-size (100%) computer alphanumeric keyboard typically uses 101 to 105 keys; keyboards integrated in laptop computers are typically less comprehensive.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

A barcode reader or barcode scanner is an optical scanner that can read printed barcodes and send the data they contain to computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses into electrical signals. Additionally, nearly all barcode readers contain decoder circuitry that can analyse the barcode's image data provided by the sensor and send the barcode's content to the scanner's output port.

Liquid crystal on silicon is a miniaturized reflective active-matrix liquid-crystal display or "microdisplay" using a liquid crystal layer on top of a silicon backplane. It is also known as a spatial light modulator. LCoS initially was developed for projection televisions, but has since found additional uses in wavelength selective switching, structured illumination, near-eye displays and optical pulse shaping.

<span class="mw-page-title-main">Handheld projector</span> Image projector in a handheld device

A handheld projector is an image projector in a handheld device. It was developed as a computer display device for compact portable devices such as mobile phones, personal digital assistants, and digital cameras, which have sufficient storage capacity to handle presentation materials but are too small to accommodate a display screen that an audience can see easily. Handheld projectors involve miniaturized hardware, and software that can project digital images onto a nearby viewing surface.

<span class="mw-page-title-main">Interactive whiteboard</span> Large interactive display

An interactive whiteboard (IWB), also known as interactive board, interactive display, interactive digital board or smart board, is a large interactive display board in the form factor of a whiteboard. It can either be a standalone touchscreen computer used independently to perform tasks and operations, or a connectable apparatus used as a touchpad to control computers from a projector. They are used in a variety of settings, including classrooms at all levels of education, in corporate board rooms and work groups, in training rooms for professional sports coaching, in broadcasting studios, and others.

<span class="mw-page-title-main">Lighting control system</span> Intelligent network based lighting control

A lighting control system incorporates communication between various system inputs and outputs related to lighting control with the use of one or more central computing devices. Lighting control systems are widely used on both indoor and outdoor lighting of commercial, industrial, and residential spaces. Lighting control systems are sometimes referred to under the term smart lighting. Lighting control systems serve to provide the right amount of light where and when it is needed.

<span class="mw-page-title-main">Virtual keyboard</span> Software component

A virtual keyboard is a software component that allows the input of characters without the need for physical keys. Interaction with a virtual keyboard happens mostly via a touchscreen interface, but can also take place in a different form when in virtual or augmented reality.

Laser color television, or laser color video display, is a type of television that utilizes two or more individually modulated optical (laser) rays of different colors to produce a combined spot that is scanned and projected across the image plane by a polygon-mirror system or less effectively by optoelectronic means to produce a color-television display. The systems work either by scanning the entire picture a dot at a time and modulating the laser directly at high frequency, much like the electron beams in a cathode ray tube, or by optically spreading and then modulating the laser and scanning a line at a time, the line itself being modulated in much the same way as with digital light processing (DLP).

Phased-array optics is the technology of controlling the phase and amplitude of light waves transmitting, reflecting, or captured (received) by a two-dimensional surface using adjustable surface elements. An optical phased array (OPA) is the optical analog of a radio-wave phased array. By dynamically controlling the optical properties of a surface on a microscopic scale, it is possible to steer the direction of light beams, or the view direction of sensors, without any moving parts. Phased-array beam steering is used for optical switching and multiplexing in optoelectronic devices and for aiming laser beams on a macroscopic scale.

<span class="mw-page-title-main">Osram Opto Semiconductors GmbH</span>

Osram Opto Semiconductors GmbH of Regensburg, Germany, was a wholly owned subsidiary of Osram GmbH, which was the world's second largest manufacturer of optoelectronic semiconductors after Nichia and followed in third place by Cree Inc. The company was founded in 1999 as a joint venture between Osram and Infineon Technologies. In 2021 Osram Opto Semiconductors was integrated to AMS-Osram International GmbH and is now part of the AMS Osram Group.

A structured-light 3D scanner is a 3D scanning device for measuring the three-dimensional shape of an object using projected light patterns and a camera system.

<span class="mw-page-title-main">Laser projector</span> Device which creates images with lasers

A laser projector is a device that projects changing laser beams on a screen to create a moving image for entertainment or professional use. It consists of a housing that contains lasers, mirrors, galvanometer scanners, and other optical components. A laser projector may contain one laser light source for single-color projection or three sources for RGB full color projection.

<span class="mw-page-title-main">Computer keyboard</span> Data input device

A computer keyboard is a peripheral input device modeled after the typewriter keyboard which uses an arrangement of buttons or keys to act as mechanical levers or electronic switches. Replacing early punched cards and paper tape technology, interaction via teleprinter-style keyboards have been the main input method for computers since the 1970s, supplemented by the computer mouse since the 1980s.

Canesta was a fabless semiconductor company that was founded in April, 1999, by Cyrus Bamji, Abbas Rafii, and Nazim Kareemi.

<span class="mw-page-title-main">Input device</span> Device that provides data and signals to a computer

In computing, an input device is a piece of equipment used to provide data and control signals to an information processing system, such as a computer or information appliance. Examples of input devices include keyboards, computer mice, scanners, cameras, joysticks, and microphones.

This is a list of infrared topics.

<span class="mw-page-title-main">Optical head-mounted display</span> Type of wearable device

An optical head-mounted display (OHMD) is a wearable device that has the capability of reflecting projected images as well as allowing the user to see through it. In some cases, this may qualify as augmented reality (AR) technology. OHMD technology has existed since 1997 in various forms, but despite a number of attempts from industry, has yet to have had major commercial success.

References

  1. 1 2 EP 0554492 Hans E. Korth: "Method and device for optical input of commands or data". filed on 07.02.1992
  2. Marriott, Michel (2002). "No Keys, Just Soft Light and You". Archived from the original on 2020-05-03. Retrieved 2018-07-12.
  3. Hesseldahl, Arik (2002). "Typing On The Table". Forbes. Archived from the original on 2020-05-02. Retrieved 2018-07-12.
  4. Shiels, Maggie (2002-10-15). "The keyboard that isn't there". BBC News. Archived from the original on 2020-05-02. Retrieved 2018-07-12.
  5. Kanellos, Michael (2006-09-19). "Honda investing in chips to help cars see - Roadshow". Roadshow. Archived from the original on October 23, 2012. Retrieved 2018-07-12.
  6. "WAVE Report". www.wave-report.com. Archived from the original on 2010-02-25. Retrieved 2018-07-12.
  7. "The iTech Virtual Keyboard". Archived from the original on March 5, 2012. Retrieved 2010-03-31.
  8. Higareda, Desiree (2016-11-29). "This Magic Box Turns Any Surface Into A Virtual Keyboard Or Piano". SnapMunk. Archived from the original on 2018-07-12. Retrieved 2016-12-16.