Projective connection

Last updated

In differential geometry, a projective connection is a type of Cartan connection on a differentiable manifold.

Contents

The structure of a projective connection is modeled on the geometry of projective space, rather than the affine space corresponding to an affine connection. Much like affine connections, projective connections also define geodesics. However, these geodesics are not affinely parametrized. Rather they are projectively parametrized, meaning that their preferred class of parameterizations is acted upon by the group of fractional linear transformations.

Like an affine connection, projective connections have associated torsion and curvature.

Projective space as the model geometry

The first step in defining any Cartan connection is to consider the flat case: in which the connection corresponds to the Maurer-Cartan form on a homogeneous space.

In the projective setting, the underlying manifold of the homogeneous space is the projective space RPn which we shall represent by homogeneous coordinates . The symmetry group of is G = PSL(n+1,R). [1] Let H be the isotropy group of the point . Thus, M = G/H presents as a homogeneous space.

Let be the Lie algebra of G, and that of H. Note that . As matrices relative to the homogeneous basis, consists of trace-free matrices:

.

And consists of all these matrices with . Relative to the matrix representation above, the Maurer-Cartan form of G is a system of 1-forms satisfying the structural equations (written using the Einstein summation convention): [2]

[3]

Projective structures on manifolds

A projective structure is a linear geometry on a manifold in which two nearby points are connected by a line (i.e., an unparametrized geodesic) in a unique manner. Furthermore, an infinitesimal neighborhood of each point is equipped with a class of projective frames . According to Cartan (1924),

Une variété (ou espace) à connexion projective est une variété numérique qui, au voisinage immédiat de chaque point, présente tous les caractères d'un espace projectif et douée de plus d'une loi permettant de raccorder en un seul espace projectif les deux petits morceaux qui entourent deux points infiniment voisins. ...
Analytiquement, on choisira, d'une manière d'ailleurs arbitraire, dans l'espace projectif attaché à chaque point a de la variété, un repére définissant un système de coordonnées projectives. ... Le raccord entre les espaces projectifs attachés à deux points infiniment voisins a et a' se traduira analytiquement par une transformation homographique. ... [4]

This is analogous to Cartan's notion of an affine connection , in which nearby points are thus connected and have an affine frame of reference which is transported from one to the other (Cartan, 1923):

La variété sera dite à "connexion affine" lorsqu'on aura défini, d'une manière d'ailleurs arbitraire, une loi permettant de repérer l'un par rapport à l'autre les espaces affines attachés à deux points infiniment voisins quelconques m et m' de la variété; cete loi permettra de dire que tel point de l'espace affine attaché au point m' correspond à tel point de l'espace affine attaché au point m, que tel vecteur du premier espace es parallèle ou équipollent à tel vecteur du second espace. [5]

In modern language, a projective structure on an n-manifold M is a Cartan geometry modelled on projective space, where the latter is viewed as a homogeneous space for PSL(n+1,R). In other words it is a PSL(n+1,R)-bundle equipped with

such that the solder form induced by these data is an isomorphism.

Notes

  1. It is also possible to use PGL(n+1,R), but PSL(n+1,R) is more convenient because it is connected.
  2. Cartan's approach was to derive the structural equations from the volume-preserving condition on SL(n+1) so that explicit reference to the Lie algebra was not required.
  3. A point of interest is this last equation is completely integrable, which means that the fibres of can be defined using only the Maurer-Cartan form, by the Frobenius integration theorem.
  4. A variety (or space) with projective connection is a numerical variety which, in the immediate neighbourhood of each point, possesses all the characters of a projective space and is moreover endowed with a law making it possible to connect in a single projective space the two small regions which surround two infinitely close points. Analytically, we choose, in a way otherwise arbitrary, a frame defining a projective frame of reference in the projective space attached to each point of the variety. .. The connection between the projective spaces attached to two infinitely close points a and a' will result analytically in a homographic (projective) transformation. ..
  5. The variety will be said to "affinely connected" when one defines, in a way otherwise arbitrary, a law making it possible to place the affine spaces, attached to two arbitrary infinitely close points m and m' of the variety, in correspondence with each other; this law will make it possible to say that a particular point of the affine space attached to the point m' corresponds to a particular point of the affine space attached to the point m, in such a way that a vector of the first space is parallel or equipollent with the corresponding vector of the second space.

Related Research Articles

In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.

<span class="mw-page-title-main">Moving frame</span> Generalization of an ordered basis of a vector space

In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space.

In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstein–Cartan theory is the simplest Poincaré gauge theory.

<span class="mw-page-title-main">Affine connection</span> Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

<span class="mw-page-title-main">Holonomy</span> Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

<span class="mw-page-title-main">ADE classification</span>

In mathematics, the ADE classification is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in. The complete list of simply laced Dynkin diagrams comprises

In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one-form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.

<span class="mw-page-title-main">Symmetric space</span> A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

In differential geometry, a quaternion-Kähler manifold is a Riemannian 4n-manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1) for some . Here Sp(n) is the sub-group of consisting of those orthogonal transformations that arise by left-multiplication by some quaternionic matrix, while the group of unit-length quaternions instead acts on quaternionic -space by right scalar multiplication. The Lie group generated by combining these actions is then abstractly isomorphic to .

Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s.

<span class="mw-page-title-main">Hermitian symmetric space</span> Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

<span class="mw-page-title-main">Ovoid (projective geometry)</span>

In projective geometry an ovoid is a sphere like pointset (surface) in a projective space of dimension d ≥ 3. Simple examples in a real projective space are hyperspheres (quadrics). The essential geometric properties of an ovoid are:

  1. Any line intersects in at most 2 points,
  2. The tangents at a point cover a hyperplane, and
  3. contains no lines.
<span class="mw-page-title-main">Torsion tensor</span> Manner of characterizing a twist or screw of a moving frame around a curve

In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.

In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.

References