Protocol-dependent module

Last updated

Protocol-dependent modules (PDMs) are used by the routing protocol EIGRP to make decisions about adding routes learned from other sources; for example other routers or routing protocols to the routing table. In fact EIGRP has the capability for routing several different protocols including IPv4 and IPv6 using protocol-dependent modules (PDMs). The PDM is also capable of carrying information from the routing table to the topology table. EIGRP offers support for various routed protocols (e.g. Internet Protocol Version 6 (IPv6), IP, IPX, AppleTalk), and has added support for Service Routing (SAF) PDMs. The only other routing protocol that comes with support for multiple network layer protocols is Intermediate System-to-Intermediate System (IS-IS).

"In theory, EIGRP can add PDMs to easily adapt to new or revised routed protocols such as IPv6. Each PDM is responsible for all functions related to its specific routed protocol. The IP-EIGRP module is responsible for the following functions:

  1. Send and receive EIGRP packets that bear IP data.
  2. Notify DUAL (Diffusing Update Algorithm) of new IP routing information that is received.
  3. Maintain the results of DUAL routing decisions in the IP routing table.
  4. Redistribute routing information that was learned by other IP-capable routing protocols." [1]

When a newly discovered neighbor is learned, the address and interface of the neighbor are recorded, and this information is held in the neighbor table, stored in RAM. There is one neighbor table per each protocol-dependent module. [2]

Related Research Articles

An Internet Protocol address is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. An IP address serves two main functions: host or network interface identification and location addressing.

IPv6 Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion. IPv6 is intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, who subsequently ratified it as an Internet Standard on 14 July 2017.

The Internet Protocol (IP) is the principal communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on short path labels rather than long network addresses, thus avoiding complex lookups in a routing table and speeding traffic flows. The labels identify virtual links (paths) between distant nodes rather than endpoints. MPLS can encapsulate packets of various network protocols, hence the "multiprotocol" reference on its name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

Router (computing) Device that forwards data packets between computer networks, creating an overlay internetwork

A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions on the Internet. Data sent through the internet, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork until it reaches its destination node.

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. BGP is classified as a path-vector routing protocol, and it makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a Packet switching network.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS). It is defined as OSPF Version 2 in RFC 2328 (1998) for IPv4. The updates for IPv6 are specified as OSPF Version 3 in RFC 5340 (2008). OSPF supports the Classless Inter-Domain Routing (CIDR) addressing model.

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. Functionality of EIGRP was converted to an open standard in 2013 and was published with informational status as RFC 7868 in 2016.

Network address translation Protocol facilitating connection of one IP address space to another

Network address translation (NAT) is a method of remapping an IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing device. The technique was originally used to avoid the need to assign a new address to every host when a network was moved, or when the upstream Internet service provider was replaced, but could not route the networks address space. It has become a popular and essential tool in conserving global address space in the face of IPv4 address exhaustion. One Internet-routable IP address of a NAT gateway can be used for an entire private network.

In the seven-layer OSI model of computer networking, the network layer is layer 3. The network layer is responsible for packet forwarding including routing through intermediate routers.

Netfilter is a framework provided by the Linux kernel that allows various networking-related operations to be implemented in the form of customized handlers. Netfilter offers various functions and operations for packet filtering, network address translation, and port translation, which provide the functionality required for directing packets through a network and prohibiting packets from reaching sensitive locations within a network.

Mobile IP is an Internet Engineering Task Force (IETF) standard communications protocol that is designed to allow mobile device users to move from one network to another while maintaining a permanent IP address. Mobile IP for IPv4 is described in IETF RFC 5944, and extensions are defined in IETF RFC 4721. Mobile IPv6, the IP mobility implementation for the next generation of the Internet Protocol, IPv6, is described in RFC 6275.

The diffusing update algorithm (DUAL) is the algorithm used by Cisco's EIGRP routing protocol to ensure that a given route is recalculated globally whenever it might cause a routing loop. It was developed by J.J. Garcia-Luna-Aceves at SRI International. The full name of the algorithm is DUAL finite-state machine. EIGRP is responsible for the routing within an autonomous system, and DUAL responds to changes in the routing topology and dynamically adjusts the routing tables of the router automatically.

A routing protocol specifies how routers communicate with each other to distribute information that enables them to select routes between any two nodes on a computer network. Routers perform the "traffic directing" functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled data lines and computers and route data around obstructions is what gives the Internet its fault tolerance and high availability.

In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.

IPv6 address Label to identify a network interface of a computer or other network node

An Internet Protocol Version 6 address is a numerical label that is used to identify a network interface of a computer or a network node participating in an IPv6 computer network, and locate it in the network. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

An IPv6 packet is the smallest message entity exchanged using Internet Protocol version 6 (IPv6).

An interior gateway protocol (IGP) is a type of protocol used for exchanging routing information between gateways within an autonomous system. This routing information can then be used to route network-layer protocols like IP.

References

  1. 2003 Cisco Systems
  2. Lammle, Todd. CCNA Study Guide.