Pyrogallolarenes

Last updated

A pyrogallolarene (also calix[4]pyrogallolarene) is a macrocycle, or a cyclic oligomer, based on the condensation of pyrogallol (1,2,3-trihydroxybenzene) and an aldehyde. Pyrogallolarenes are a type of calixarene, and a subset of resorcinarenes that are substituted with a hydroxyl at the 2-position.

Pyrogallolarenes, like all resorcinarenes, form inclusion complexes with other molecules forming a host–guest complex. Pyrogallolarenes (like resorcinarenes) self-assemble into larger supramolecular structures forming a hydrogen-bonded hexamer. The pyrogallolarene hexamer is unique from those formed from resorcinarene, in that it does not incorporate solvent molecules into the structure. [1] [2] Both in the crystalline state and in organic solvents, six molecules will form an assembly with an internal volume of around one cubic nanometer (nanocapsules) and shapes similar to the Archimedean solids. A number of solvent or other molecules may reside in the capsule interior. The pyrogallolarene hexamer is generally more stable than the resorcinarene hexamer, even in polar solvents. [3]

Synthesis

The pyrogallolarene macrocycle is typically prepared by condensation of pyrogallol and an aldehyde in concentrated acid solution in the presence of an alcohol solvent, usually methanol or ethanol. The reaction conditions can usually be carefully adjusted to precipitate the pure product or the product may be purified by recrystallization.

Preparation of resorcin[4]arenes from resorcinol and an aldehyde. Pyrogallolarene.png
Preparation of resorcin[4]arenes from resorcinol and an aldehyde.

Pyrogallol[4]arene is simply made by mixing a solvent-free dispersion of isovaleraldehyde with pyrogallol, and a catalytic amount of p-toluenesulfonic acid, in a mortar and pestle. [4]

Related Research Articles

Hydrogen bond Partial intermolecular bonding interaction

A hydrogen bond is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative atom or group, and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac). Such an interacting system is generally denoted Dn–H···Ac, where the solid line denotes a polar covalent bond, and the dotted or dashed line indicates the hydrogen bond. The most frequent donor and acceptor atoms are the second-row elements nitrogen (N), oxygen (O), and fluorine (F).

Aldol condensation

An aldol condensation is a condensation reaction in organic chemistry in which an enol or an enolate ion reacts with a carbonyl compound to form a β-hydroxyaldehyde or β-hydroxyketone, followed by dehydration to give a conjugated enone.

Supramolecular chemistry refers to the area of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. Whereas traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

Cucurbituril

Cucurbiturils are macrocyclic molecules made of glycoluril (=C4H2N4O2=) monomers linked by methylene bridges (-CH2-). The oxygen atoms are located along the edges of the band and are tilted inwards, forming a partly enclosed cavity. The name is derived from the resemblance of this molecule with a pumpkin of the family of Cucurbitaceae.

Trimethylsilyl

A trimethylsilyl group (abbreviated TMS) is a functional group in organic chemistry. This group consists of three methyl groups bonded to a silicon atom [−Si(CH3)3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume, which makes it useful in a number of applications.

A calixarene is a macrocycle or cyclic oligomer based on a methylene-linked phenols. With hydrophobic cavities that can hold smaller molecules or ions, calixarenes belong to the class of cavitands known in host–guest chemistry..

Macrocycle Any chemical compound having a ring composed of at least several atoms (usually minimum of 9–14 atoms)

Macrocycles are often described as molecules and ions containing a twelve or more membered ring. Classical examples include the crown ethers, calixarenes, porphyrins, and cyclodextrins. Macrocycles describe a large, mature area of chemistry.

Molecular Borromean rings

Molecular Borromean rings are an example of a mechanically-interlocked molecular architecture in which three macrocycles are interlocked in such a way that breaking any macrocycle allows the others to disassociate. They are the smallest examples of Borromean rings. The synthesis of molecular Borromean rings was reported in 2004 by the group of J. Fraser Stoddart. The so-called Borromeate is made up of three interpenetrated macrocycles formed from the reaction between 2,6-diformylpyridine and diamine compounds, complexed with zinc.

A non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 1023 molecules). Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects.

Dynamic covalent chemistry (DCvC) is a synthetic strategy employed by chemists to make complex supramolecular assemblies from discrete molecular building blocks. DCvC has allowed access to complex assemblies such as covalent organic frameworks, molecular knots, polymers, and novel macrocycles. Not to be confused with dynamic combinatorial chemistry, DCvC concerns only covalent bonding interactions. As such, it only encompasses a subset of supramolecular chemistries.

Salt bridge (protein and supramolecular) Combination of hydrogen and ionic bonding in chemistry

In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding. Ion pairing is one of the most important noncovalent forces in chemistry, in biological systems, in different materials and in many applications such as ion pair chromatography. It is a most commonly observed contribution to the stability to the entropically unfavorable folded conformation of proteins. Although non-covalent interactions are known to be relatively weak interactions, small stabilizing interactions can add up to make an important contribution to the overall stability of a conformer. Not only are salt bridges found in proteins, but they can also be found in supramolecular chemistry. The thermodynamics of each are explored through experimental procedures to access the free energy contribution of the salt bridge to the overall free energy of the state.

A resorcinarene is a macrocycle, or a cyclic oligomer, based on the condensation of resorcinol (1,3-dihydroxybenzene) and an aldehyde. Resorcinarenes are a type of calixarene. Other types of resorcinarenes include the related pyrogallolarenes and octahydroxypyridines, derived from pyrogallol and 2,6-dihydroxypyridine, respectively.

Mechanically interlocked molecular architectures (MIMAs) are molecules that are connected as a consequence of their topology. This connection of molecules is analogous to keys on a keychain loop. The keys are not directly connected to the keychain loop but they cannot be separated without breaking the loop. On the molecular level the interlocked molecules cannot be separated without the breaking of the covalent bonds that comprise the conjoined molecules, this is referred to as a mechanical bond. Examples of mechanically interlocked molecular architectures include catenanes, rotaxanes, molecular knots, and molecular Borromean rings. Work in this area was recognized with the 2016 Nobel Prize in Chemistry to Bernard L. Feringa, Jean-Pierre Sauvage, and J. Fraser Stoddart.

The term ‘polymer’ refers to large molecules whose structure is composed of multiple repeating units and the prefix ‘supra’ meaning ‘beyond the limits of’. Supramolecular polymers are a new category of polymers that can potentially be used for material applications beyond the limits of conventional polymers. By definition, supramolecular polymers are polymeric arrays of monomeric units that are connected by reversible and highly directional secondary interactions–that is, non-covalent bonds. These non-covalent interactions include van der Waals interactions, hydrogen bonding, Coulomb or ionic interactions, π-π stacking, metal coordination, halogen bonding, chalcogen bonding, and host–guest interaction. The direction and strength of the interactions are precisely tuned so that the array of molecules behaves as a polymer in dilute and concentrated solution, as well as in the bulk.

Phenylboronic acid Chemical compound

Phenylboronic acid or benzeneboronic acid, abbreviated as PhB(OH)2 where Ph is the phenyl group C6H5-, is a boronic acid containing a phenyl substituent and two hydroxyl groups attached to boron. Phenylboronic acid is a white powder and is commonly used in organic synthesis. Boronic acids are mild Lewis acids which are generally stable and easy to handle, making them important to organic synthesis.

Water cluster Cluster of water molecules held together through hydrogen bonding

In chemistry, a water cluster is a discrete hydrogen bonded assembly or cluster of molecules of water. Many such clusters have been predicted by theoretical models (in silico), and some have been detected experimentally in various contexts such as ice, bulk liquid water, in the gas phase, in dilute mixtures with non-polar solvents, and as water of hydration in crystal lattices. The simplest example is the water dimer (H2O)2.

A halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity.

Cyclotriveratrylene Chemical compound

Cyclotriveratrylene (CTV) is an organic compound with the formula [C6H2(OCH3)2CH2]3. It is a white solid that is soluble in organic solvents. The compound is a macrocycle and used in host–guest chemistry as a molecular host.

A spiropyran is a type of organic chemical compound, known for photochromic properties that provide this molecule with the ability of being used in medical and technological areas. Spiropyrans were discovered in the early twentieth century. However, it was in the middle twenties when Fisher and Hirshbergin observed their photochromic characteristics and reversible reaction. In 1952, Fisher and co-workers announced for the first time photochromism in spiropyrans. Since then, there have been many studies on photochromic compounds that have continued up to the present.

Colin Llewellyn Raston is a Professor of Chemistry of Flinders University in Adelaide, South Australia and the Premier's Professorial Fellow in Clean Technology. In 2015, he was awarded an Ig Nobel Prize in "for inventing a chemical recipe to partially un-boil an egg." In 2016, Raston was made an Officer of the Order of Australia for his services to science.

References

  1. Zhang, Qi; Catti, Lorenzo; Tiefenbacher, Konrad (2018). "Catalysis inside the Hexameric Resorcinarene Capsule" (PDF). Acc. Chem. Res. 51 (9): 2107–2114. doi:10.1021/acs.accounts.8b00320. PMID   30153000.
  2. Atwood, J. L.; Barbour, L. J.; Jerga, A. (9 April 2002). "Organization of the interior of molecular capsules by hydrogen bonding". Proceedings of the National Academy of Sciences. 99 (8): 4837–4841. doi: 10.1073/pnas.082659799 . PMC   122679 . PMID   11943875.
  3. Atwood, Jerry L.; Barbour, Leonard J.; Jerga, Agoston (7 November 2001). "Hydrogen-bonded molecular capsules are stable in polar media". Chemical Communications (22): 2376–2377. doi:10.1039/b106250f. PMID   12240083.
  4. Antesberger J, Cave GW, Ferrarelli MC, Heaven MW, Raston CL, Atwood JL (2005). "Solvent-free, direct synthesis of supramolecular nano-capsules". Chemical Communications (Cambridge, England). . (7): 892–894. doi:10.1039/b412251h. PMID   15700072.