This article needs additional citations for verification . (December 2009) (Learn how and when to remove this template message) |
In mathematics, a quasi-Lie algebra in abstract algebra is just like a Lie algebra, but with the usual axiom
Mathematics includes the study of such topics as quantity, structure, space, and change.
In algebra, which is a broad division of mathematics, abstract algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.
In mathematics, a Lie algebra is a vector space together with a non-associative, alternating bilinear map , called the Lie bracket, satisfying the Jacobi identity.
replaced by
In characteristic other than 2, these are equivalent (in the presence of bilinearity), so this distinction doesn't arise when considering real or complex Lie algebras. It can however become important, when considering Lie algebras over the integers.
In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero.
In a quasi-Lie algebra,
Therefore the bracket of any element with itself is 2-torsion, if it does not actually vanish.
In mathematics, a Lie group is a group that is also a differentiable manifold, with the property that the group operations are smooth. Lie groups are named after Norwegian mathematician Sophus Lie, who laid the foundations of the theory of continuous transformation groups.
In mathematics, anticommutativity is a specific property of some non-commutative operations. In mathematical physics, where symmetry is of central importance, these operations are mostly called antisymmetric operations, and are extended in an associative setting to cover more than two arguments. Swapping the position of two arguments of an antisymmetric operation yields a result, which is the inverse of the result with unswapped arguments. The notion inverse refers to a group structure on the operation's codomain, possibly with another operation, such as addition.
In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2-grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.
In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.
In mathematics, a formal group law is a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner (1946). The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups and Lie algebras. They are used in algebraic number theory and algebraic topology.
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:
In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.
In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra.
A non-associative algebra is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), d and a(b ) may all yield different answers.
In linear algebra, functional analysis and related areas of mathematics, a quasinorm is similar to a norm in that it satisfies the norm axioms, except that the triangle inequality is replaced by
In mathematics, a quasi-Frobenius Lie algebra
In mathematics the cotangent complex is roughly a universal linearization of a morphism of geometric or algebraic objects. Cotangent complexes were originally defined in special cases by a number of authors. Luc Illusie, Daniel Quillen, and M. André independently came up with a definition that works in all cases.
In algebra, a triple system is a vector space V over a field F together with a F-trilinear map
In mathematics, the special linear Lie algebra of order n is the Lie algebra of matrices with trace zero and with the Lie bracket . This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group.
In mathematics, the Lie product formula, named for Sophus Lie (1875), states that for arbitrary n × n real or complex matrices A and B,
In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra.
In the theory of algebras over a field, mutation is a construction of a new binary operation related to the multiplication of the algebra. In specific cases the resulting algebra may be referred to as a homotope or an isotope of the original.
In mathematics, Koszul duality, named after the French mathematician Jean-Louis Koszul, is any of various kinds of dualities found in representation theory of Lie algebras, abstract algebras as well as topology. The prototype example, due to Joseph Bernstein, Israel Gelfand, and Sergei Gelfand, is the rough duality between the derived category of a symmetric algebra and that of an exterior algebra. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature.
Jean-Pierre Serre is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954 and the inaugural Abel Prize in 2003.
In computing, a Digital Object Identifier or DOI is a persistent identifier or handle used to identify objects uniquely, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.
This algebra-related article is a stub. You can help Wikipedia by expanding it. |