Radical of an integer

Last updated

In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product:

Contents

The radical plays a central role in the statement of the abc conjecture. [1]

Examples

Radical numbers for the first few positive integers are

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, ... (sequence A007947 in the OEIS ).

For example,

and therefore

Properties

The function is multiplicative (but not completely multiplicative).

The radical of any integer is the largest square-free divisor of and so also described as the square-free kernel of . [2] There is no known polynomial-time algorithm for computing the square-free part of an integer. [3]

The definition is generalized to the largest -free divisor of , , which are multiplicative functions which act on prime powers as

The cases and are tabulated in OEIS:  A007948 and OEIS:  A058035 .

The notion of the radical occurs in the abc conjecture, which states that, for any , there exists a finite such that, for all triples of coprime positive integers , , and satisfying , [1]

For any integer , the nilpotent elements of the finite ring are all of the multiples of .

The Dirichlet series is

Related Research Articles

<span class="mw-page-title-main">Least common multiple</span> Smallest positive number divisible by two integers

In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(ab), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a, 0) as 0 for all a, since 0 is the only common multiple of a and 0.

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Euler's totient function</span> Number of integers coprime to and not exceeding n

In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n.

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Root of unity</span> Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

In mathematics, thenth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of and is not a divisor of for any k < n. Its roots are all nth primitive roots of unity , where k runs over the positive integers not greater than n and coprime to n. In other words, the nth cyclotomic polynomial is equal to

<i>abc</i> conjecture The product of distinct prime factors of a,b,c, where c is a+b, is rarely much less than c

The abc conjecture is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. It is stated in terms of three positive integers and that are relatively prime and satisfy . The conjecture essentially states that the product of the distinct prime factors of is usually not much smaller than . A number of famous conjectures and theorems in number theory would follow immediately from the abc conjecture or its versions. Mathematician Dorian Goldfeld described the abc conjecture as "The most important unsolved problem in Diophantine analysis".

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet.

10 (ten) is the even natural number following 9 and preceding 11. Ten is the base of the decimal numeral system, the most common system of denoting numbers in both spoken and written language.

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such that

Balanced ternary is a ternary numeral system that uses a balanced signed-digit representation of the integers in which the digits have the values −1, 0, and 1. This stands in contrast to the standard (unbalanced) ternary system, in which digits have values 0, 1 and 2. The balanced ternary system can represent all integers without using a separate minus sign; the value of the leading non-zero digit of a number has the sign of the number itself. The balanced ternary system is an example of a non-standard positional numeral system. It was used in some early computers and has also been used to solve balance puzzles.

One half (pl. halves) is the irreducible fraction resulting from dividing one (1) by two (2), or the fraction resulting from dividing any number by its double.

In mathematics, a Thue equation is a Diophantine equation of the form

<span class="mw-page-title-main">Colossally abundant number</span> Type of natural number

In number theory, a colossally abundant number is a natural number that, in a particular, rigorous sense, has many divisors. Particularly, it is defined by a ratio between the sum of an integer's divisors and that integer raised to a power higher than one. For any such exponent, whichever integer has the highest ratio is a colossally abundant number. It is a stronger restriction than that of a superabundant number, but not strictly stronger than that of an abundant number.

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

In number theory the n conjecture is a conjecture stated by Browkin & Brzeziński (1994) as a generalization of the abc conjecture to more than three integers.

References

  1. 1 2 Gowers, Timothy (2008). "V.1 The ABC Conjecture". The Princeton Companion to Mathematics. Princeton University Press. p. 681.
  2. Sloane, N. J. A. (ed.). "SequenceA007947". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  3. Adleman, Leonard M.; McCurley, Kevin S. "Open Problems in Number Theoretic Complexity, II". Algorithmic Number Theory: First International Symposium, ANTS-I Ithaca, NY, USA, May 6–9, 1994, Proceedings. Lecture Notes in Computer Science. Vol. 877. Springer. pp. 291–322. CiteSeerX   10.1.1.48.4877 . doi:10.1007/3-540-58691-1_70. MR   1322733.