Radio over fiber

Last updated

Radio over fiber (RoF) or RF over fiber (RFoF) refers to a technology whereby light is modulated by a radio frequency signal and transmitted over an optical fiber link. Main technical advantages of using fiber optical links are lower transmission losses and reduced sensitivity to noise and electromagnetic interference compared to all-electrical signal transmission.

Contents

Applications range from the transmission of mobile radio signals (3G, 4G, 5G and WiFi) and the transmission of cable television signals (CATV) to the transmission of RF L-Band signals in ground stations for satellite communications.

General Advantage

Low attenuation

Signals transmitted on optical fiber attenuate much less than through other media like metal cables or wireless media. [1] By using optical fiber, the radio signals can gap larger transmission distances, reducing the need of additional repeaters or amplifiers.

Applications

Wireless Communications

In the area of Wireless Communications one main application is to facilitate wireless access, such as 5G and WiFi simultaneously from the same antenna. [2] In other words, radio signals are carried over fiber-optic cable. Thus, a single antenna can receive any and all radio signals (5G, Wifi, cell, etc..) carried over a single-fiber cable to a central location where equipment then converts the signals; this is opposed to the traditional way where each protocol type (5G, WiFi, cell) requires separate equipment at the location of the antenna. [2]

Although radio transmission over fiber is used for multiple purposes, such as in cable television (CATV) networks and in satellite base stations, the term RoF is usually applied when this is done for wireless access.

In RoF systems, wireless signals are transported in optical form between a central station and a set of base stations before being radiated through the air. Each base station is adapted to communicate over a radio link with at least one user's mobile station located within the radio range of said base station. The advantage is that the equipment for WiFi, 5G and other protocols can be centralized in one place, with remote antennas attached via fiber optic serving all protocols. It greatly reduces the equipment and maintenance cost of the network. [2]

RoF technology enables convergence of fixed and mobile networks.

RoF transmission systems are usually classified into two main categories (RF-over-fiber ; IF-over-fiber) depending on the frequency range of the radio signal to be transported.

Access to dead zones

An important application of RoF is its use to provide wireless coverage in the area where wireless backhaul link is not possible. These zones can be areas inside a structure such as a tunnel, areas behind buildings, Mountainous places or secluded areas such as jungles.

FTTA (Fiber to the antenna)

By using an optical connection directly to the antenna, the equipment vendor can gain several advantages like low line losses, immunity to lightning strikes/electric discharges and reduced complexity of base station by attaching lightweight optical-to-electrical (O/E) converter directly to antenna. [3]

Advantages for Wireless Communications

Low complexity

RoF makes use of the concept of a remote station (RS). This station only consists of an optical-to-electrical (O/E) (and an optional frequency up or down converter), amplifiers, and the antenna. This means that the resource management and signal generation circuitry of the base station can be moved to a centralized location and shared between several remote stations, thus simplifying the architecture.

Lower cost

Simpler structure of remote base station means lower cost of infrastructure, lower power consumption by devices and simpler maintenance all contributed to lowering the overall installation and maintenance cost. Further reduction can also be made by use of low-cost graded index polymer optical fiber (GIPOF) [3]

Future-proof

Fiber optics are designed to handle gigabits/second speeds which means they will be able to handle speeds offered by future generations of networks for years to come. RoF technology is also protocol and bit-rate transparent, hence, can be employed to use any current and future technologies. [2] [4] New RoF techniques that support MIMO-enabled wireless services, notably 4G/5G mobile and 802.11 WLAN standards, have also been proposed. [5]

Satellite Communications

In Satellite Communications RF-over-fiber technology is employed to transmit, mainly RF signals in the L-Band frequency range (950 MHz to 2150 MHz), between a central control room and a satellite antenna at a satellite earth station. By so doing, high frequency equipment can be centralized and high-loss, heavy and expensive coaxial cables can be replaced. [6] Typically this RF-over-Fiber technology is considered for transmission distances starting at about 50 meters. With the use of DWDM RF-over-Fiber systems even the low loss bi-directional transmission of multiple RF signals over one optical fiber with transmission distances up to 100 km is enabled.

Ka-BandEarth Station Diversity in Satellite Communication

State-of-the art satellite communication systems at the highest data rates are operated on the Ka band . As transmission quality on Ka band frequencies is heavily dependent on weather conditions, suitable system configurations need to be carefully planned and chosen. In Ka band Site Diversity configurations signal transmission is redirected from the Main Site to a Diverse Site in case of adverse weather conditions. These Site Diversity configurations, often rely on DWDM RF-over-Fibre transmission systems, as those are the most cost efficient solutions and ensure good signal quality. [6] [7]

Cable Television

One popular use for RF over fiber is for cable TV systems. Content providers may transport their entire CATV channel lineup over a single-fiber optic cable, because this way they can transport the signal for hundreds of km. It works like this: An electrical RF signal usually in the range of 54–870 MHz is converted to modulated light using RF 1310 nm or 1550 nm laser optics. The light travels over single-mode fiber to the fiber optic RF receiver where is converted back to electrical RF. Electrical RF is directly connected to a TV or set-top box. 1550 nm is more popular because it has less losses in the fiber and by using fiber-optic amplifier known as EDFA it is possible to extend the transport distance. 1310 nm loses about 0.35 dB/km of optical signal, 1550 nm loses only 0.25 dB/km. Optical budget between transmitter and receiver varies depending on the transmitter power and receiver sensitivity.

Deployment

As of April 2012, AT&T had 3000 systems deployed in the United States in places like stadiums, shopping malls and inside buildings. [2] "We continue to go very, very aggressively on distributing the antenna system solutions", said CEO Randall Stephenson in 2012. [2]

In China, systems are being widely deployed in industrial zones, harbors, hospitals and supermarkets. [2] Plans are in place to expand into rural zones along rail lines, and in new residential and commercial construction spaces. [2] It is believed China will be the leading user of the technology and this will bring down the cost of equipment. [2]

Implementations

The Very Large Array in New Mexico was one of the first RF systems to switch to using fiber instead of coax and waveguides.

Related Research Articles

<span class="mw-page-title-main">Cable television</span> Television content transmitted via signals on coaxial cable

Cable television is a system of delivering television programming to consumers via radio frequency (RF) signals transmitted through coaxial cables, or in more recent systems, light pulses through fibre-optic cables. This contrasts with broadcast television, in which the television signal is transmitted over-the-air by radio waves and received by a television antenna attached to the television; or satellite television, in which the television signal is transmitted over-the-air by radio waves from a communications satellite orbiting the Earth, and received by a satellite dish antenna on the roof. FM radio programming, high-speed Internet, telephone services, and similar non-television services may also be provided through these cables. Analog television was standard in the 20th century, but since the 2000s, cable systems have been upgraded to digital cable operation.

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

A communications system or communication system is a collection of individual telecommunications networks systems, relay stations, tributary stations, and terminal equipment usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union.

<span class="mw-page-title-main">Repeater</span> Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

<span class="mw-page-title-main">Transmission medium</span> Conduit for signal propagation

A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While a material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber as well as multiplication of capacity.

<span class="mw-page-title-main">Wireless</span> Transfer of information or power that does not require the use of physical wires

Wireless communication is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, such as light and magnetic or electric fields, or the use of sound.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

<span class="mw-page-title-main">Cable television headend</span> Facility for cable television system

A cable television headend is a master facility for receiving television signals for processing and distribution over a cable television system. A headend facility may be staffed or unstaffed and is typically surrounded by some type of security fencing. The building is typically sturdy and purpose-built to provide security, cooling, and easy access for the electronic equipment used to receive and re-transmit video over the local cable infrastructure. One can also find head ends in power-line communication (PLC) substations and Internet communications networks.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those satellites used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India's regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

Hybrid fiber-coaxial (HFC) is a broadband telecommunications network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.

<span class="mw-page-title-main">Microwave transmission</span> Transmission of information via microwaves

Microwave transmission is the transmission of information by electromagnetic waves with wavelengths in the microwave frequency range of 300 MHz to 300 GHz of the electromagnetic spectrum. Microwave signals are normally limited to the line of sight, so long-distance transmission using these signals requires a series of repeaters forming a microwave relay network. It is possible to use microwave signals in over-the-horizon communications using tropospheric scatter, but such systems are expensive and generally used only in specialist roles.

<span class="mw-page-title-main">Fiber-optic communication</span> Transmitting information over optical fiber

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

<span class="mw-page-title-main">Telecommunications engineering</span> Subfield of electronics engineering

Telecommunications engineering is a subfield of electronics engineering which seeks to design and devise systems of communication at a distance. The work ranges from basic circuit design to strategic mass developments. A telecommunication engineer is responsible for designing and overseeing the installation of telecommunications equipment and facilities, such as complex electronic switching system, and other plain old telephone service facilities, optical fiber cabling, IP networks, and microwave transmission systems. Telecommunications engineering also overlaps with broadcast engineering.

<span class="mw-page-title-main">Fixed wireless</span>

Fixed wireless is the operation of wireless communication devices or systems used to connect two fixed locations with a radio or other wireless link, such as laser bridge. Usually, fixed wireless is part of a wireless LAN infrastructure. The purpose of a fixed wireless link is to enable data communications between the two sites or buildings. Fixed wireless data (FWD) links are often a cost-effective alternative to leasing fiber or installing cables between the buildings.

<span class="mw-page-title-main">TOSLINK</span> Standardized optical fiber digital audio interconnect

TOSLINK is a standardized optical fiber connector system. Also known generically as optical audio, its most common use is in consumer audio equipment, where it carries a digital audio stream from components such as CD and DVD players, Digital Audio Tape recorders, computers, and modern video game consoles, to an AV receiver that can decode two channels of uncompressed pulse-code modulated (PCM) audio or compressed 5.1/7.1 surround sound such as Dolby Digital or DTS Surround System. Unlike HDMI, TOSLINK does not have the bandwidth to carry the uncompressed versions of Dolby TrueHD, DTS-HD Master Audio, or more than two channels of PCM audio.

In telecommunications, radio frequency over glass (RFoG) is a deep-fiber network design in which the coax portion of the hybrid fiber coax (HFC) network is replaced by a single-fiber passive optical network (PON). Downstream and return-path transmission use different wavelengths to share the same fiber. The return-path wavelength standard is expected to be 1610 nm, but early deployments have used 1590 nm. Using 1590/1610 nm for the return path allows the fiber infrastructure to support both RFoG and a standards-based PON simultaneously, operating with 1490 nm downstream and 1310 nm return-path wavelengths.

<span class="mw-page-title-main">Fibre satellite distribution</span> Distribution of TV signals using optical fibre

Fibre satellite distribution is a technology that enables satellite TV signals from an antenna to be distributed using an optical fibre cable infrastructure and then converted to electrical signals for use with conventional set-top box receivers.

<span class="mw-page-title-main">Remote radio head</span> Type of radio used in wireless telecommunications networks

A remote radio head (RRH), also called a remote radio unit (RRU) in wireless networks, is a remote radio transceiver that connects to an operator radio control panel via electrical or wireless interface. When used to describe aircraft radio cockpit radio systems, the control panel is often called the radio head.

References

  1. M. Vidmar, “Optical-fiber communications: Components and systems”, Informacije MIDEM, vol. 31., no. 4., 2001
  2. 1 2 3 4 5 6 7 8 9 10 Hal Hodson (September 15, 2012). "Wired is the new wireless". New Scientist .
  3. 1 2 A. Ng'oma, “Radio-over-Fibre Technology for Broadband Wireless. Communication Systems”, PhD Thesis, Eindhoven University of Technology, Eindhoven, 2005
  4. Hoon Kim (2005) Radio-over-Fiber Technology for Wireless Communication Services, Samsung Electronics
  5. G.S.D. Gordon, "Feasibility Demonstration of a Mode-Division Multiplexed MIMO-enabled Radio-over-Fiber Distributed Antenna System", IEEE Journal of Lightwave Technology, vol. 32, no. 20, pp. 3521-3528, Oct. 2014
  6. 1 2 "Maximizing Ka-Band Network Uptime by Ground Station Diversity" (PDF). Via Satellite. October/November 2015.
  7. "Ka-Band Diversity - DEV-Systemtechnik". www.dev-systemtechnik.com. Retrieved October 24, 2017.