Radioflash

Last updated

Radioflash is a term used (chiefly in sources from the United Kingdom) in early literature on the phenomena now known more widely as nuclear electromagnetic pulse, or EMP. The term originated in the early 1950s, primarily associated with the "click" typically heard on radio receivers when a nuclear bomb was detonated. It was later discovered that the phenomena was one part of the more wide-ranging set of effects resulting from EMPs after the detonation of a nuclear weapon.

Instrumentation failures observed during nuclear weapons testing between 1951 and 1953 were mentioned in declassified military literature as attributed to "radiated radioflash". [1] [2] A similar term was first used in the Soviet Union in an early theoretical publication (which contained some errors and was later corrected [3] ) on the effects of a nuclear explosion. [4]

The term has also been used during the 1970s in high-energy physics in describing a type of collective ion acceleration that would take place during intense solar flares. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear weapon</span> Explosive device that derives its destructive force from nuclear reactions

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion reactions, producing a nuclear explosion. Both bomb types release large quantities of energy from relatively small amounts of matter.

<span class="mw-page-title-main">Electromagnetic compatibility</span> Electrical engineering concept

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage to operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

A nuclear electromagnetic pulse is a burst of electromagnetic radiation created by a nuclear explosion. The resulting rapidly varying electric and magnetic fields may couple with electrical and electronic systems to produce damaging current and voltage surges. The specific characteristics of a particular nuclear EMP event vary according to a number of factors, the most important of which is the altitude of the detonation.

Cyclotron radiation is electromagnetic radiation emitted by non-relativistic accelerating charged particles deflected by a magnetic field. The Lorentz force on the particles acts perpendicular to both the magnetic field lines and the particles' motion through them, creating an acceleration of charged particles that causes them to emit radiation as a result of the acceleration they undergo as they spiral around the lines of the magnetic field.

<span class="mw-page-title-main">Effects of nuclear explosions</span> Type and severity of damage caused by nuclear weapons

The effects of a nuclear explosion on its immediate vicinity are typically much more destructive and multifaceted than those caused by conventional explosives. In most cases, the energy released from a nuclear weapon detonated within the lower atmosphere can be approximately divided into four basic categories:

<span class="mw-page-title-main">Project Orion (nuclear propulsion)</span> Nuclear explosion-powered spacecraft

Project Orion was a study conducted between the 1950s and 1960s by the United States Air Force, DARPA, and NASA for the purpose of measuring the efficacy of a starship directly propelled by a series of explosions of atomic bombs behind the craft: nuclear pulse propulsion. Early versions of this vehicle were proposed to take off from the ground; later versions were presented for use only in space. Six non-nuclear tests were conducted using models. The project was eventually abandoned for multiple reasons, including the Partial Test Ban Treaty, which banned nuclear explosions in space, and concerns over nuclear fallout.

<span class="mw-page-title-main">Operation Greenhouse</span> Series of 1950s US nuclear tests

Operation Greenhouse was the fifth American nuclear test series, the second conducted in 1951 and the first to test principles that would lead to developing thermonuclear weapons. Conducted at the new Pacific Proving Ground, on islands of the Enewetak Atoll, it mounted the devices on large steel towers to simulate air bursts. This series of nuclear weapons tests was preceded by Operation Ranger and succeeded by Operation Buster-Jangle.

A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.

RDS-37 was the Soviet Union's first two-stage hydrogen bomb, first tested on 22 November 1955. The weapon had a nominal yield of approximately 3 megatons. It was scaled down to 1.6 megatons for the live test.

<span class="mw-page-title-main">Starfish Prime</span> 1962 high-altitude nuclear test by the U.S. over the Pacific Ocean

Starfish Prime was a high-altitude nuclear test conducted by the United States, a joint effort of the Atomic Energy Commission (AEC) and the Defense Atomic Support Agency. It was launched from Johnston Atoll on July 9, 1962, and was the largest nuclear test conducted in outer space, and one of five conducted by the US in space.

<span class="mw-page-title-main">Operation Fishbowl</span> Series of 1960s US high-altitude nuclear tests

Operation Fishbowl was a series of high-altitude nuclear tests in 1962 that were carried out by the United States as a part of the larger Operation Dominic nuclear test program. Flight-test vehicles were designed and manufactured by Avco Corporation.

<span class="mw-page-title-main">High-altitude nuclear explosion</span> Nuclear detonations in the upper layers of Earths atmosphere

High-altitude nuclear explosions are the result of nuclear weapons testing within the upper layers of the Earth's atmosphere and in outer space. Several such tests were performed at high altitudes by the United States and the Soviet Union between 1958 and 1962.

<span class="mw-page-title-main">Heliophysics</span> Science of the heliosphere

Heliophysics is the physics of the Sun and its connection with the Solar System. NASA defines heliophysics as "(1) the comprehensive new term for the science of the Sun - Solar System Connection, (2) the exploration, discovery, and understanding of Earth's space environment, and (3) the system science that unites all of the linked phenomena in the region of the cosmos influenced by a star like our Sun."

Radiofrequency MASINT is one of the six major disciplines generally accepted to make up the field of Measurement and Signature Intelligence (MASINT), with due regard that the MASINT subdisciplines may overlap, and MASINT, in turn, is complementary to more traditional intelligence collection and analysis disciplines such as SIGINT and IMINT. MASINT encompasses intelligence gathering activities that bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).

Nuclear MASINT is one of the six major subdisciplines generally accepted to make up Measurement and Signature Intelligence (MASINT), which covers measurement and characterization of information derived from nuclear radiation and other physical phenomena associated with nuclear weapons, reactors, processes, materials, devices, and facilities. Nuclear monitoring can be done remotely or during onsite inspections of nuclear facilities. Data exploitation results in characterization of nuclear weapons, reactors, and materials. A number of systems detect and monitor the world for nuclear explosions, as well as nuclear materials production.

<span class="mw-page-title-main">Nuclear holocaust</span> Scenario of civilization collapse or human extinction by nuclear weapons

A nuclear holocaust, also known as a nuclear apocalypse,nuclear Armageddon, or atomic holocaust, is a theoretical scenario where the mass detonation of nuclear weapons causes globally widespread destruction and radioactive fallout. Such a scenario envisages large parts of the Earth becoming uninhabitable due to the effects of nuclear warfare, potentially causing the collapse of civilization and, in the worst case, extinction of humanity and/or termination of all biological life on Earth.

The Hans A. Bethe Prize, is presented annually by the American Physical Society. The prize honors outstanding work in theory, experiment or observation in the areas of astrophysics, nuclear physics, nuclear astrophysics, or closely related fields. The prize consists of $10,000 and a certificate citing the contributions made by the recipient.

<span class="mw-page-title-main">Conrad Longmire</span>

Conrad Lee Longmire was an American theoretical physicist who was best known as the discoverer of the mechanism behind high-altitude electromagnetic pulse.

An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering.

The Soviet Union's K project nuclear test series was a group of five nuclear tests conducted in 1961–1962. These tests followed the 1961 Soviet nuclear tests series and preceded the 1962 Soviet nuclear tests series.

References

  1. O'Keefe, Bernard J., Nuclear Hostages, Houghton Mifflin, Boston, 1983.
  2. Baum, Carl E., "Reminiscences of High-Power Electromagnetics," IEEE Trans. Electromagn. Compat. Vol. 49, No. 2. pp. 211218. May 2007.
  3. Gilinsky, Victor, "The Kompaneets Model for Radio Emission from a Nuclear Explosion". RAND Corporation, 1964.
  4. Kompaneets, Aleksandr Solomonovich; "Radio Emission from an Atomic Explosion". Journal of Experimental and Theoretical Physics (Журнал экспериментальной и теоретической физики), Vol. 35. December, 1958 (in Russian).
  5. Gershtein, S.S., The Collective Acceleration Mechanism of Solar Cosmic Rays. Institute of High Energy Physics, Serpukhov, 1978.