Ramona passive sensor

Last updated
Ramona KRTP-81 Ramona KRTP-81 81 M.jpg
Ramona KRTP-81

Ramona was the second generation Czechoslovak electronic support measures (ESM) system that uses measurements of time difference of arrival (TDOA) of pulses at three or four sites to accurately detect and track airborne emitters by multilateration.

Contents

History

Ramona's designation was KRTP-81 and it carried the NATO reporting name of Soft Ball. The serial number was derived from the Czech phrase "Komplet radiotechnického průzkumu" meaning "Radiotechnical Reconnaissance Set". A later upgraded version was designated KRTP-81M. Ramona was deployed in 1979 and could semi-automatically track 20 targets simultaneously. It superseded Kopáč.

Appearance

Each receiver comprised a large spherical radome mounted on the top of a 25 m fixed mast. This radome, made of identical segments of polyurethane foam, contained the radio antennas and the microwave components, intermediate frequency preamplifiers and the two-way communications equipment for communicating between central and side sites. At first glance the system bore a striking resemblance to typical Eastern European water towers.

Mode of operation

The deployed system typically comprises a central site (containing the signal processing equipment and an ESM receiver) and two or three side sites containing only an ESM receiver. The side sites relay the signals received to the central site over a point-to-point microwave link. The central site uses the known propagation delay from the side sites to estimate the TDOA of the pulses at each site. The TDOA of a pulse between one side site and the central site locates the target on a hyperboloid. A second side site provides a second TDOA and hence a second hyperboloid. The intersection of these two hyperboloids places the target on a line, providing a 2D measurement of the target's location (no height).

Ramona operated over the frequency range of 0.8-18 GHz and provided surveillance over a sector of approximately 100 degrees. System deployment was complex and took between 4 and 12 hours. The system was transportable using thirteen Tatra T138 trucks.

Exports

17 Ramona systems and 14 upgraded Ramona-M systems were built. Of these, 14 Ramona and 10 upgraded systems were exported to the Soviet Union. Of these, the system with serial number 104 was deployed by the Soviet Union in North Korea. Other systems were exported to the German Democratic Republic. Syria received four (three Ramona-M) between 1981-94. One of these systems was deployed to Djebel Baruk in Lebanon. This site was first attacked by Israeli Air Force and then occupied by IDF during june 1982.

See also

Literature

Related Research Articles

Electronic warfare support measures

In military telecommunications, electronic support (ES) or electronic support measures (ESM) gather intelligence through passive "listening" to electromagnetic radiations of military interest. They are an aspect of electronic warfare involving actions taken under direct control of an operational commander to detect, intercept, identify, locate, record, and/or analyze sources of radiated electromagnetic energy for the purposes of immediate threat recognition or longer-term operational planning. Thus, electronic support provides a source of information required for decisions involving electronic protection (EP), electronic attack (EA), avoidance, targeting, and other tactical employment of forces. Electronic support data can be used to produce signals intelligence (SIGINT), communications intelligence (COMINT) and electronics intelligence (ELINT).

Doppler radar Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar.

PAVE PAWS Early warning radar

PAVE PAWS Phased Array Warning System) is a complex Cold War early warning radar and computer system developed in 1980 to "detect and characterize a sea-launched ballistic missile attack against the United States". With the first solid-state phased array deployed, the system used a pair of Raytheon AN/FPS-115 phased array radar sets at each site to cover a wide azimuth angle of 240 degrees. Two sites were deployed in 1980 at the periphery of the contiguous United States, then two more in 1987–95, as part of the United States Space Surveillance Network. One system was sold to Taiwan and is still in service.

Direction finding Measurement of the direction from which a received signal was transmitted

Direction finding (DF), or radio direction finding (RDF), is – in accordance with International Telecommunication Union (ITU) – defined as radio location that uses the reception of radio waves to determine the direction in which a radio station or an object is located. This can refer to radio or other forms of wireless communication, including radar signals detection and monitoring (ELINT/ESM). By combining the direction information from two or more suitably spaced receivers, the source of a transmission may be located via triangulation. Radio direction finding is used in the navigation of ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. RDF was important in combating German threats during both the World War II Battle of Britain and the long running Battle of the Atlantic. In the former, the Air Ministry also used RDF to locate its own fighter groups and vector them to detected German raids.

Active electronically scanned array Type of phased array radar

An active electronically scanned array (AESA) is a type of phased array antenna, which is a computer-controlled array antenna in which the beam of radio waves can be electronically steered to point in different directions without moving the antenna. In the AESA, each antenna element is connected to a small solid-state transmit/receive module (TRM) under the control of a computer, which performs the functions of a transmitter and/or receiver for the antenna. This contrasts with a passive electronically scanned array (PESA), in which all the antenna elements are connected to a single transmitter and/or receiver through phase shifters under the control of the computer. AESA's main use is in radar, and these are known as active phased array radar (APAR).

Kolchuga passive sensor

The Kolchuga passive sensor is an electronic-warfare support measures system developed in the Soviet Union and manufactured in Ukraine. Its detection range is limited by line-of-sight but may be up to 800 km (500 mi) for very high altitude, very powerful emitters. Frequently referred to as Kolchuga Radar, the system is not really a radar, but an ESM system comprising three or four receivers, deployed tens of kilometres apart, which detect and track aircraft by triangulation and multilateration of their RF emissions.

Passive radar systems encompass a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radar, the latter also including the exploitation of cooperative and non-cooperative radar transmitters.

Radiolocation, also known as radiolocating or radiopositioning, is the process of finding the location of something through the use of radio waves. It generally refers to passive uses, particularly radar—as well as detecting buried cables, water mains, and other public utilities. It is similar to radionavigation, but radiolocation usually refers to passively finding a distant object rather than actively one's own position. Both are types of radiodetermination. Radiolocation is also used in real-time locating systems (RTLS) for tracking valuable assets.

Erieye Airborne Early Warning and Control System used on a variety of aircraft platforms

The Erieye radar system is an Airborne Early Warning and Control System (AEW&C) developed by Saab Electronic Defence Systems of Sweden. It uses active electronically scanned array (AESA) technology. The Erieye is used on a variety of aircraft platforms, such as the Saab 340 and Embraer R-99. It has recently been implemented on the Bombardier Global 6000 aircraft as the GlobalEye.

VERA passive sensor

VERA -VERA passive radar is an electronic support measures (ESM) system that uses measurements of time difference of arrival (TDOA) of pulses at three or four sites to accurately detect and track airborne emitters. It is reportedly able to detect military "invisible aircraft". The radar has been developed by The manufacturer is the ERA a.s. based in Pardubice.

Kopáč was an early electronic warfare support measures (ESM) system developed in Czechoslovakia in the early 1960s that used measurements of time difference of arrival (TDOA) of pulses at three sites to accurately detect and track airborne emitters. The system used the principle of multilateration and was capable of simultaneously manually tracking up to six targets. It was first deployed in 1963 and was also known by its serial number, PRP-1. The initials PRP come from the Czech "Přesný radiotechnický pátrač", meaning "Accurate Radiotechnical Locator", the name comes from "Korelační trač", meaning "Correlation Locator".

Tamara was the third generation Czechoslovak electronic support measures (ESM) system that used measurements of time difference of arrival (TDOA) of pulses at three or four sites to accurately detect and track airborne emitters by multilateration. Tamara's designations were KRTP-86 and KRTP-91 and it carried the NATO reporting name of Trash Can. The designation was derived from the Czech phrase "Komplet Radiotechnického Průzkumu" meaning "Radiotechnical Reconnaissance Set". It was claimed to be the only one in the world able to detect military "invisible aircraft".

Multilateration is a technique for determining a "vehicle's" position based on measurement of the times of arrival (TOAs) of energy waves traveling from (navigation) or to (surveillance) multiple system stations having synchronized "clocks". Multilateration is: abbreviated MLAT; more completely termed pseudo-range multilateration; and also termed hyperbolic positioning.

Airport surveillance radar Radar system

An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.

Radiofrequency MASINT is one of the six major disciplines generally accepted to make up the field of Measurement and Signature Intelligence (MASINT), with due regard that the MASINT subdisciplines may overlap, and MASINT, in turn, is complementary to more traditional intelligence collection and analysis disciplines such as SIGINT and IMINT. MASINT encompasses intelligence gathering activities that bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

Signals intelligence operational platforms by nation

Signals intelligence operational platforms are employed by nations to collect signals intelligence, which is intelligence-gathering by interception of signals, whether between people or between machines, or mixtures of the two. As sensitive information is often encrypted, signals intelligence often involves the use of cryptanalysis. However, traffic analysis—the study of who is signalling whom and in what quantity—can often produce valuable information, even when the messages themselves cannot be decrypted.

AN/FPQ-16 PARCS

The AN/FPQ-16 Perimeter Acquisition Radar Attack Characterization System is a powerful United States Space Force phased-array radar system located in North Dakota. It is the second most powerful phased array radar system in the US Space Force's fleet of missile warning and space surveillance systems.

The Synchronous Impulse Reconstruction (SIRE) radar is a multiple-input, multiple-output (MIMO) radar system designed to detect landmines and improvised explosive devices (IEDs). It consists of a low frequency, impulse-based ultra-wideband (UWB) radar that uses 16 receivers with 2 transmitters at the ends of the 2 meter-wide receive array that send alternating, orthogonal waveforms into the ground and return signals reflected from targets in a given area. The SIRE radar system comes mounted on top of a vehicle and receives signals that form images that uncover up to 33 meters in the direction that the transmitters are facing. It is able to collect and process data as part of an affordable and lightweight package due to slow (40 MHz) yet inexpensive analog-to-digital (A/D) converters that sample the wide bandwidth of radar signals. It uses a GPS and Augmented Reality (AR) technology in conjunction with camera to create a live video stream with a more comprehensive visual display of the targets.

The AR-320 is a 3D early warning radar developed by the UK's Plessey in partnership with US-based ITT-Gilfillan. The system combined the receiver electronics, computer systems and displays of the earlier Plessey AR-3D with a Gilfillan-developed transmitter and planar array antenna from their S320 series. The main advantage over the AR-3D was the ability to shift frequencies to provide a level of frequency agility and thus improve its resistance to jamming.