Random amplification of polymorphic DNA

Last updated
RAPD analysis with primer GCAGGATACG of strains of the single-cell free-living eukaryote, Paramecium caudatum. Journal.pone.0265139.g001.png
RAPD analysis with primer GCAGGATACG of strains of the single-cell free-living eukaryote, Paramecium caudatum.

Random amplified polymorphic DNA (RAPD), pronounced "rapid", [2] is a DNA profiling technique that generates simple genomic fingerprints without requiring sequence information. Developed in the very early 1990s by Antoni Rafalski and colleagues at E.I. du Pont de Nemours (Wilmington, Delaware, USA), [3] the technique uses short arbitrary primers, typically 10–12 nucleotides (nt) in length, and a polymerase chain reaction (PCR), to amplify anonymous regions in genomic DNA useful for genetic typing, strain discrimination, genome mapping, molecular ecology and population analysis. [4] [5] Primers anneal at numerous partially complementary sites, and those that occur in opposite orientation and within amplifiable distance (generally < 3–5 kb) are amplified and visualized by agarose gel electrophoresis and ethidium bromide staining. RAPD belongs to a family of arbitrarily amplified DNA profiling methods [6] that include DNA amplification fingerprinting (DAF) [7] and arbitrarily primed PCR (AP-PCR). [8] These techniques use higher primer-to-template DNA ratios and shorter and longer primers, respectively, [3] and produce more complex fingerprinting patterns. [9]

Contents

Mechanism

RAPD amplifies DNA using a thermostable DNA polymerase and one or more arbitrary primers under moderate annealing stringency, allowing primers to bind at multiple genomic sites with limited mismatch tolerance. [10] Amplification occurs between oppositely oriented primer matches; once extension produces fragments with perfect primer complements at their termini, these amplicons become preferential templates and are exponentially enriched. The fragment pattern therefore reflects the genomic distribution of primer-matching motifs, distances between them, and polymorphisms (gain/loss of sites and indels) that alter fragment presence or size.

As in other arbitrarily amplified DNA methods, [10] [11] events in the first cycles determine which regions enter amplification. Early products compete for primer access, and only those that permit efficient primer binding and extension continue to amplify, while others drop out. Although secondary structures can form, their influence is less pronounced than in very low-stringency methods. As cycling proceeds, productive primer–template duplexes are preferentially converted into product, yielding a reproducible but less complex subset of genomic fragments characteristic of RAPD.

Primers and amplification conditions

RAPD employs short, arbitrary 10-mer primers with balanced GC content (~40–80%) to promote annealing at multiple genomic sites under low-stringency PCR conditions. GC content is positively correlated with degree amplification, [3] a correlation that is absent in DAF and suggest mechanistic differences between the two arbitrarily amplified DNA variants. [9] Primer sequences are selected to minimize self-complementarity and palindromic motifs, reducing primer-dimer formation during amplification. Standardized commercial arbitrary primer kits (e.g., those originating from Operon Technologies and now supplied by Eurofins Genomics [12] ) are commonly used because they provide consistent performance and reproducible banding patterns across experiments. It is however advisable to test dilution series of the primers to explore amplification performance.

Due to the low-stringency nature of the RAPD technique, precise control over amplification conditions is crucial for generating reproducible and consistent DNA fingerprints. [13] In particular, quantity and quality of DNA are main factors controlling reproducibility. For example, excessive DNA can lead to smearing or inconsistent banding patterns. Many primers fail to amplify products; to function, they may require optimization of magnesium concentration. Because RAPD is highly sensitive to reaction conditions, [14] it is crucial to maintain strict standardization of components and to use the same thermocycler for all reactions, as variations in heating/cooling rates can lead to poor reproducibility between labs. Some practitioners suggest a hot start PCR method or a slow ramping between annealing and extension temperatures to improve reproducibility and reduce unwanted primer-dimer formation.

Optimization

RAPD analysis demands careful optimization, [14] with amplification highly sensitive to reaction composition and thermal cycling conditions. [15] [16] Because many interacting variables affect amplification efficiency, reproducibility and banding patterns, optimization is labor-intensive and typically relies on iterative or statistically designed experiments (e.g., matrix analysis, [17] fractional factorial designs, [18] or Taguchi experimental design methods [19] ) rather than exhaustive testing. Critical variables include magnesium, primer and DNA concentration, annealing temperature, polymerase type, and thermocycler performance. For example, reproducibility declines below a minimum template concentration and excessive DNA or a degraded template produces smearing or poor resolution. [20] Typically, 5–25 ng of genomic DNA per 25 µL reaction is effective. Magnesium concentration must be empirically optimized (usually 1–4 mM), [21] particularly when DNA is dissolved in TE buffer, as EDTA chelates Mg²⁺ and lowers its effective concentration. Low Mg²⁺ yields few bands. Because different thermostable DNA polymerases may amplify different products, their use must be optimized. [22] RAPD is also highly sensitive to thermocycler behavior, affecting reproducibility across different laboratories. [23] Differences in heating/cooling rates, temperature uniformity, and aging of Peltier elements can significantly affect results, even between identical models. Units lacking internal temperature probes may show discrepancies between block and sample temperatures. Periodic verification of thermal performance with a thermocouple is recommended, ideally annually.

DNA separation and visualization

RAPD amplification products are typically separated using agarose gel electrophoresis and visualized with fluorescent intercalating dyes (e.g., ethidium bromide, SYBR Safe), or very rarely radioactive labeling. These techniques are sufficient to reveal distinct fingerprints. Products have also been separated with polyacrylamide gel electrophoresis (PAGE) and sometimes visualized using silver staining, [24] techniques that are more labor–intensive, time–consuming, and expensive. Note that the simplicity and familiarity of agarose gel electrophoresis has popularized the use of RAPD, despite its low resolving power.

Applications

RAPD profiles are widely used in assessment of genetic diversity and population structure, cultivar and species identification, forensic and microbial analysis, molecular ecology, and genetic mapping. RAPD analyses are used extensively for analyzing genetic relationships, population structure, and identifying cultivars in plants and animals. [25] [26] [27] The technique can identify specific species (e.g. fungal isolates [28] ), distinguishing between closely related taxa. RAPD can differentiate between individuals in forensic science (e.g. forensic entomology [29] and botany [30] ) and can be applied in an ecotoxicological context. [31] It can identify microbial strains [32] and be used to characterize, and trace, the phylogeny of a wide diversity of organisms. [6] The arrival of massive parallel sequencing (e.g. metabarcoding, whole genome sequencing) has somehow displaced the use of RAPD and other arbitrarily amplified DNA techniques, though they continue to be valuable in unexpected fields (e.g. bacteriophage identification [33] [34] [35] ).

Advantages and limitations

RAPD is a quick, cost-effective, and efficient PCR-based technique for genetic analysis that requires no prior sequence information, making it ideal for studying anonymous genomes. However, it is plagued by poor reproducibility between laboratories due to sensitivity to template and reaction conditions and produces dominant markers that cannot distinguish heterozygotes.

Advantages
Limitations

See also

References

  1. Matsumoto, Sonoko; Watanabe, Kenta; Kiyota, Hiroko; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa (2022-03-11). "Distinction of Paramecium strains by a combination method of RAPD analysis and multiplex PCR". PLOS ONE. 17 (3): e0265139. doi:10.1371/journal.pone.0265139. ISSN   1932-6203. PMC   8916638 . PMID   35275953.{{cite journal}}: CS1 maint: article number as page number (link) CS1 maint: unflagged free DOI (link)
  2. "Random Amplified Polymorphic DNA (RAPD)". www.ncbi.nlm.nih.gov. Retrieved 2020-11-10.
  3. 1 2 3 Williams, John G.K.; Kubelik, Anne R.; Livak, Kenneth J.; Rafalski, J.Antoni; Tingey, Scott V. (1990). "DNA polymorphisms amplified by arbitrary primers are useful as genetic markers". Nucleic Acids Research. 18 (22): 6531–6535. doi:10.1093/nar/18.22.6531. ISSN   0305-1048. PMC   332606 . PMID   1979162.
  4. Williams, John G.K.; Hanafey, Michael K.; Antoni Rafalski, J.; Tingey, Scott V. (1993), "[51] Genetic analysis using random amplified polymorphic DNA markers", Methods in Enzymology, vol. 218, Elsevier, pp. 704–740, doi:10.1016/0076-6879(93)18053-f, ISBN   978-0-12-182119-7 , retrieved 2026-02-06{{citation}}: CS1 maint: work parameter with ISBN (link)
  5. Hadrys, H.; Balick, M.; Schierwater, B. (1992). "Applications of random amplified polymorphic DNA (RAPD) in molecular ecology". Molecular Ecology. 1 (1): 55–63. doi:10.1111/j.1365-294X.1992.tb00155.x. ISSN   0962-1083. PMID   1344984.
  6. 1 2 Schierwater, Bernd (1995). "Arbitrarily amplified DNA in systematics and phylogenetics". Electrophoresis. 16 (1): 1643–1647. doi:10.1002/elps.11501601272. ISSN   0173-0835. PMID   8582349.
  7. Caetano-Anollés, Gustavo; Brant J., Bassam; Peter M., Gresshoff (1991). "DNA Amplification Fingerprinting Using Very Short Arbitrary Oligonucleotide Primers". Nature Biotechnology. 9 (6): 553–557. doi:10.1038/nbt0691-553. ISSN   1087-0156. PMID   1367225.
  8. Welsh, John; McClelland, Michael (1990). "Fingerprinting genomes using PCR with arbitrary primers". Nucleic Acids Research. 18 (24): 7213–7218. doi:10.1093/nar/18.24.7213. ISSN   0305-1048. PMC   332855 . PMID   2259619.
  9. 1 2 Caetano-Anollés, G. (1994). "MAAP: a versatile and universal tool for genome analysis". Plant Molecular Biology. 25 (6): 1011–1026. doi:10.1007/BF00014674. ISSN   0167-4412. PMID   7919212.
  10. 1 2 Caetano-Anollés, G (1993). "Amplifying DNA with arbitrary oligonucleotide primers". Genome Research. 3 (2): 85–94. doi:10.1101/gr.3.2.85. ISSN   1088-9051. PMID   8268791.
  11. Caetano-Anollés, Gustavo; Bassam, Brant J.; Gresshoff, Peter M. (1992). "Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides". Molecular and General Genetics MGG. 235 (2–3): 157–165. doi:10.1007/BF00279356. ISSN   0026-8925. PMID   1465089.
  12. "Eurofins Genomics". eurofinsgenomics.com. Retrieved 2026-02-07.
  13. Micheli, M. R.; Bova, R.; D’Ambrosio, E. (1997), Micheli, Maria Rita; Bova, Rodolfo (eds.), "Random Amplified Polymorphic DNA Assay", Fingerprinting Methods Based on Arbitrarily Primed PCR, Berlin, Heidelberg: Springer, pp. 55–63, doi:10.1007/978-3-642-60441-6_9, ISBN   978-3-642-60441-6 , retrieved 2026-02-07{{citation}}: CS1 maint: work parameter with ISBN (link)
  14. 1 2 Cobb, B. (1997), Micheli, Maria Rita; Bova, Rodolfo (eds.), "Optimization of RAPD Fingerprinting", Fingerprinting Methods Based on Arbitrarily Primed PCR, Berlin, Heidelberg: Springer, pp. 93–102, doi:10.1007/978-3-642-60441-6_12, ISBN   978-3-642-60441-6 , retrieved 2026-02-07{{citation}}: CS1 maint: work parameter with ISBN (link)
  15. Munthali, M; Ford-Lloyd, B V; Newbury, H J (1992). "The random amplification of polymorphic DNA for fingerprinting plants". Genome Research. 1 (4): 274–276. doi:10.1101/gr.1.4.274. ISSN   1088-9051. PMID   1477663.
  16. Meunier, J.-R; Grimont, P.A.D (1993). "Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting". Research in Microbiology. 144 (5): 373–379. doi:10.1016/0923-2508(93)90194-7. PMID   8248630.
  17. Bassam, Brant J.; Caetano-Anollés, Gustavo; Gresshoff, Peter M. (1992). "DNA amplification fingerprinting of bacteria". Applied Microbiology and Biotechnology. 38 (1): 70–76. doi:10.1007/BF00169422. ISSN   0175-7598. PMID   1369011.
  18. Wolff, K.; Schoen, E. D.; Rijn, J. Peters-Van (1993). "Optimizing the generation of random amplified polymorphic DNAs in chrysanthemum". Theoretical and Applied Genetics. 86 (8): 1033–1037. doi:10.1007/BF00211058. ISSN   0040-5752. PMID   24194014.
  19. Caetano-Anollés, Gustavo (1998). "DAF Optimization Using Taguchi Methods and the Effect of Thermal Cycling Parameters on DNA Amplification". BioTechniques. 25 (3): 472–480. doi:10.2144/98253rr03. ISSN   0736-6205.
  20. Davin-Regli, A; Abed, Y; Charrel, R.N; Bollet, C; de Micco, P (1995). "Variations in DNA concentrations significantly affect the reproducibility of RAPD fingerprint patterns". Research in Microbiology. 146 (7): 561–568. doi:10.1016/0923-2508(96)80562-6. PMID   8577997.
  21. Park, Y. H.; Kohel, R. J. (1994). "Effect of concentration of MgCl2 on random-amplified DNA polymorphism". BioTechniques. 16 (4): 652–656. ISSN   0736-6205. PMID   8024785.
  22. Schierwater, B.; Ender, A. (1993). "Different thermostable DNA polymerases may amplify different RAPD products". Nucleic Acids Research. 21 (19): 4647–4648. doi:10.1093/nar/21.19.4647. ISSN   0305-1048. PMC   311208 . PMID   8233808.
  23. Penner, G A; Bush, A; Wise, R; Kim, W; Domier, L; Kasha, K; Laroche, A; Scoles, G; Molnar, S J; Fedak, G (1993). "Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories". Genome Research. 2 (4): 341–345. doi:10.1101/gr.2.4.341. ISSN   1088-9051. PMID   8324508.
  24. DeLaat, Daiane Mariele; Santos Carvalho, Maria Raquel; Lovato, Maria Bernadete; Porto Acevedo, Maria Dolores; Graça da Fonseca, Creusa (2005). "Applicability of RAPD markers on silverstained polyacrylamide gels to ascertain genetic diversity in Peripatus acacioi (Peripatidae; Onychophora)". Genetics and Molecular Research (GMR). 4(4): 716-725. PMID   16475117.
  25. Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Bahkali, Ali H.; Al Sadoon, Mohammad; Shobrak, Mohammad (2010). "A Brief Review of Molecular Techniques to Assess Plant Diversity". International Journal of Molecular Sciences. 11 (5): 2079–2096. doi:10.3390/ijms11052079. ISSN   1422-0067. PMC   2885095 . PMID   20559503.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. Garrido-Cardenas, Jose Antonio; Mesa-Valle, Concepción; Manzano-Agugliaro, Francisco (2018). "Trends in plant research using molecular markers". Planta. 247 (3): 543–557. doi:10.1007/s00425-017-2829-y. ISSN   0032-0935. PMID   29243155.
  27. Grover, Atul; Sharma, P. C. (2016-03-03). "Development and use of molecular markers: past and present". Critical Reviews in Biotechnology. 36 (2): 290–302. doi:10.3109/07388551.2014.959891. ISSN   0738-8551. PMID   25430893.
  28. Oliveira, Manuela; Azevedo, Luísa (2022-07-29). "Molecular Markers: An Overview of Data Published for Fungi over the Last Ten Years". Journal of Fungi. 8 (8): 803. doi:10.3390/jof8080803. ISSN   2309-608X. PMID   36012792.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. Scieuzo, Carmen; Rinaldi, Roberta; De Stefano, Federica; Di Fazio, Aldo; Falabella, Patrizia (2025-07-05). "The Contribution of Molecular Biology to Forensic Entomology". Insects. 16 (7): 694. doi:10.3390/insects16070694. ISSN   2075-4450. PMID   40725324.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  30. Coyle, H. M. (2009). "Forensic Botany: Evidence and Analysis". Forensic Science Review. 21 (1): 15–23. ISSN   1042-7201. PMID   26242238.
  31. De Wolf, Hans; Blust, Ronny; Backeljau, Thierry (2004). "The use of RAPD in ecotoxicology". Mutation Research/Reviews in Mutation Research. 566 (3): 249–262. doi:10.1016/j.mrrev.2003.10.003. PMID   15082240.
  32. Gürtler, V; Mayall, B C (2001). "Genomic approaches to typing, taxonomy and evolution of bacterial isolates". International Journal of Systematic and Evolutionary Microbiology. 51 (1): 3–16. doi:10.1099/00207713-51-1-3. ISSN   1466-5026. PMID   11211268.
  33. Czajkowski, Robert; Ozymko, Zofia; de Jager, Victor; Siwinska, Joanna; Smolarska, Anna; Ossowicki, Adam; Narajczyk, Magdalena; Lojkowska, Ewa (2015). Schuch, Raymond (ed.). "Genomic, Proteomic and Morphological Characterization of Two Novel Broad Host Lytic Bacteriophages ΦPD10.3 and ΦPD23.1 Infecting Pectinolytic Pectobacterium spp. and Dickeya spp". PLOS ONE. 10 (3): e0119812. doi:10.1371/journal.pone.0119812. ISSN   1932-6203. PMC   4372400 . PMID   25803051.{{cite journal}}: CS1 maint: article number as page number (link) CS1 maint: unflagged free DOI (link)
  34. Tetens, Julia; Sprotte, Sabrina; Thimm, Georg; Wagner, Natalia; Brinks, Erik; Neve, Horst; Hölzel, Christina Susanne; Franz, Charles M. A. P. (2021-06-30). "First Molecular Characterization of Siphoviridae-Like Bacteriophages Infecting Staphylococcus hyicus in a Case of Exudative Epidermitis". Frontiers in Microbiology. 12. doi:10.3389/fmicb.2021.653501. ISSN   1664-302X. PMC   8299950 . PMID   34305825.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  35. Chhanda, Mousumi Sarker; St-Laurent, Rébecca E.; Paquet, Valérie E.; Deslauriers, Nicolas; Gagné-Thivierge, Cynthia; Denicourt, Martine; Lambert, Marie-Ève; Vincent, Antony T.; Charette, Steve J. (2026-01-22). "Three Staphylococcus Bacteriophages Isolated from Swine Farm Environment in Quebec, Canada, Infecting S. chromogenes". Viruses. 18 (1): 146. doi:10.3390/v18010146. ISSN   1999-4915. PMC   12846477 . PMID   41600907.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  36. Paran, I.; Michelmore, R. W. (1993). "Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce". Theoretical and Applied Genetics. 85 (8): 985–993. doi:10.1007/BF00215038. ISSN   0040-5752. PMID   24196149.