Silver staining

Last updated

In pathology, silver staining is the use of silver to selectively alter the appearance of a target in microscopy of histological sections; in temperature gradient gel electrophoresis; and in polyacrylamide gels.

Contents

In traditional stained glass, silver stain is a technique to produce yellow to orange or brown shades (or green on a blue glass base), by adding a mixture containing silver compounds (notably silver nitrate), and firing lightly. It was introduced soon after 1800, and is the "stain" in the term "stained glass". Silver compounds [1] are mixed with binding substances, applied to the surface of glass, and then fired in a furnace or kiln. [2] [3] [4]

History

Camillo Golgi perfected silver staining for the study of the nervous system. Although the exact chemical mechanism by which this occurs is unknown, [5] Golgi's method stains a limited number of cells at random in their entirety. [6]

Silver staining was introduced by Kerenyi and Gallyas as a sensitive procedure to detect trace amounts of proteins in gels. [7] The technique has been extended to the study of other biological macromolecules that have been separated in a variety of supports. [8]

Classical Coomassie brilliant blue staining can usually detect a 50 ng protein band; silver staining increases the sensitivity typically 50 times.

Many variables can influence the color intensity and every protein has its own staining characteristics; clean glassware, pure reagents, and water of highest purity are the key points to successful staining. [9]

Chemistry

Some cells are argentaffin. These reduce silver solution to metallic silver after formalin fixation. Other cells are argyrophilic. These reduce silver solution to metallic silver after being exposed to the stain that contains a reductant, for example hydroquinone or formalin.

Silver nitrate forms insoluble silver phosphate with phosphate ions; this method is known as the Von Kossa Stain. When subjected to a reducing agent, usually hydroquinone, it forms black elementary silver. This is used for study of formation of calcium phosphate particles during bone growth.

Applications

Histological characterisation

Silver staining aids the visualization of targets of interest, namely intracellular and extracellular cellular components such as DNA and proteins, such as type III collagen and reticulin fibres by the deposition of metallic silver particles on the targets of interest. [10]

Diagnostic microbiology

Pseudomonas , [11] Legionella , Leptospira , H. pylori , Bartonella and Treponema , and fungi such as Pneumocystis , Cryptococcus , and Candida are organisms that are stained with silver.[ citation needed ]

Karyotype analysis

Silver staining is used in karyotyping. Silver nitrate stains the nucleolar organization region (NOR)-associated protein, producing a dark region wherein the silver is deposited and denoting the activity of rRNA genes within the NOR. Human chromosomes 13, 14, 15, 21, and 22 have NORs, which increase the silver stain activity by at least 50 times.[ citation needed ]

Genomic and proteomic analysis

Silver staining is used to stain gels. The silver stain of proteins in Agarose gels was developed in 1973 by Kerenyi and Gallyas. [12] Later it was adapted to polyacrylamide gels used in SDS-PAGE, [13] [14] [15] [16] [17] and also for staining DNA or RNA. [18] The glycosylations of glycoproteins and polysaccharides can be oxidised by a 1-hour pre-treatment with 0.1% periodic acid at 4 °C, which improves the binding of silver ions and the staining result. [19]

First, the proteins are denatured in the gel by a fixative solution of 10% acetic acid and 30% ethanol and precipitated, at the same time the detergent (mostly SDS) is extracted. The diffusion of the proteins is thus significantly reduced. After repeated washing with water, the gel is incubated in a silver nitrate solution. Silver ions bind to negatively charged side chains of the proteins. Excess silver ions are then washed off with water. In the final development step, the silver ions are reduced to elemental silver by addition of alkaline formaldehyde. This stains the sites where proteins are present, brown to black.

The intensity of the staining depends on the primary structure of the protein. Furthermore, the cleanliness of the vessels used and the purity of the reagents influence the silver stain. [20] Common artifacts in silver stained gels are bands of keratin in the ranges of 54-57 kDa and 65-68 kDa [21] as a contamination of the sample prior to the electrophoresis.

Methenamine silver stains

There are several silver stains incorporating methenamine, including:

Related Research Articles

<span class="mw-page-title-main">Agarose gel electrophoresis</span> Method for separation and analysis of biomolecules using agarose gel

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size, and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

<span class="mw-page-title-main">Gel electrophoresis</span> Method for separation and analysis of biomolecules

Gel electrophoresis is a method for separation and analysis of biomacromolecules and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.

The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also used. For brevity, this article uses pI. The net charge on the molecule is affected by pH of its surrounding environment and can become more positively or negatively charged due to the gain or loss, respectively, of protons (H+).

<span class="mw-page-title-main">Polyacrylamide gel electrophoresis</span>

Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Electrophoretic mobility is a function of the length, conformation, and charge of the molecule. Polyacrylamide gel electrophoresis is a powerful tool used to analyze RNA samples. When polyacrylamide gel is denatured after electrophoresis, it provides information on the sample composition of the RNA species.

<span class="mw-page-title-main">Western blot</span> Analytical technique used in molecular biology

The western blot, or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detecting the proteins, this technique is also utilized to visualize, distinguish, and quantify the different proteins in a complicated protein combination.

<span class="mw-page-title-main">Two-dimensional gel electrophoresis</span>

Two-dimensional gel electrophoresis, abbreviated as 2-DE or 2-D electrophoresis, is a form of gel electrophoresis commonly used to analyze proteins. Mixtures of proteins are separated by two properties in two dimensions on 2D gels. 2-DE was first independently introduced by O'Farrell and Klose in 1975.

<span class="mw-page-title-main">Gel electrophoresis of proteins</span>

Protein electrophoresis is a method for analysing the proteins in a fluid or an extract. The electrophoresis may be performed with a small volume of sample in a number of alternative ways with or without a supporting medium: SDS polyacrylamide gel electrophoresis, free-flow electrophoresis, electrofocusing, isotachophoresis, affinity electrophoresis, immunoelectrophoresis, counterelectrophoresis, and capillary electrophoresis. Each method has many variations with individual advantages and limitations. Gel electrophoresis is often performed in combination with electroblotting immunoblotting to give additional information about a specific protein. Because of practical limitations, protein electrophoresis is generally not suited as a preparative method.

<span class="mw-page-title-main">Coomassie brilliant blue</span> Chemical compound

Coomassie brilliant blue is the name of two similar triphenylmethane dyes that were developed for use in the textile industry but are now commonly used for staining proteins in analytical biochemistry. Coomassie brilliant blue G-250 differs from Coomassie brilliant blue R-250 by the addition of two methyl groups. The name "Coomassie" is a registered trademark of Imperial Chemical Industries.

<span class="mw-page-title-main">Zymography</span>

Zymography is an electrophoretic technique for the detection of hydrolytic enzymes, based on the substrate repertoire of the enzyme. Three types of zymography are used; in gel zymography, in situ zymography and in vivo zymography For instance, gelatin embedded in a polyacrylamide gel will be digested by active gelatinases run through the gel. After Coomassie staining, areas of degradation are visible as clear bands against a darkly stained background.

<span class="mw-page-title-main">Peptide mass fingerprinting</span>

Peptide mass fingerprinting (PMF) is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF. The method was developed in 1993 by several groups independently. The peptide masses are compared to either a database containing known protein sequences or even the genome. This is achieved by using computer programs that translate the known genome of the organism into proteins, then theoretically cut the proteins into peptides, and calculate the absolute masses of the peptides from each protein. They then compare the masses of the peptides of the unknown protein to the theoretical peptide masses of each protein encoded in the genome. The results are statistically analyzed to find the best match.

<span class="mw-page-title-main">Southwestern blot</span> Molecular biology technique

The southwestern blot, is a lab technique that involves identifying as well as characterizing DNA-binding proteins by their ability to bind to specific oligonucleotide probes. Determination of molecular weight of proteins binding to DNA is also made possible by the technique. The name originates from a combination of ideas underlying Southern blotting and Western blotting techniques of which they detect DNA and protein respectively. Similar to other types of blotting, proteins are separated by SDS-PAGE and are subsequently transferred to nitrocellulose membranes. Thereafter southwestern blotting begins to vary with regards to procedure as since the first blotting’s, many more have been proposed and discovered with goals of enhancing results. Former protocols were hampered by the need for large amounts of proteins and their susceptibility to degradation while being isolated.

<span class="mw-page-title-main">Electrophoretic mobility shift assay</span>

An electrophoretic mobility shift assay (EMSA) or mobility shift electrophoresis, also referred as a gel shift assay, gel mobility shift assay, band shift assay, or gel retardation assay, is a common affinity electrophoresis technique used to study protein–DNA or protein–RNA interactions. This procedure can determine if a protein or mixture of proteins is capable of binding to a given DNA or RNA sequence, and can sometimes indicate if more than one protein molecule is involved in the binding complex. Gel shift assays are often performed in vitro concurrently with DNase footprinting, primer extension, and promoter-probe experiments when studying transcription initiation, DNA gang replication, DNA repair or RNA processing and maturation, as well as pre-mRNA splicing. Although precursors can be found in earlier literature, most current assays are based on methods described by Garner and Revzin and Fried and Crothers.

<span class="mw-page-title-main">Molecular-weight size marker</span> Set of standards

A molecular-weight size marker, also referred to as a protein ladder, DNA ladder, or RNA ladder, is a set of standards that are used to identify the approximate size of a molecule run on a gel during electrophoresis, using the principle that molecular weight is inversely proportional to migration rate through a gel matrix. Therefore, when used in gel electrophoresis, markers effectively provide a logarithmic scale by which to estimate the size of the other fragments.

<span class="mw-page-title-main">QPNC-PAGE</span> Biochemistry technique for separating proteins

QPNC-PAGE, or quantitative preparative native continuous polyacrylamide gel electrophoresis, is a bioanalytical, high-resolution and highly accurate technique applied in biochemistry and bioinorganic chemistry to separate proteins quantitatively by isoelectric point. This standardized variant of native gel electrophoresis and subset of polyacrylamide gel electrophoresis is used by biologists to isolate biomacromolecules in solution, for example, active or native metalloproteins in biological samples or properly and improperly folded metal cofactor-containing proteins or protein isoforms in complex protein mixtures.

<span class="mw-page-title-main">Tetrasodium tris(bathophenanthroline disulfonate)ruthenium(II)</span> Chemical compound

Tetrasodium tris(bathophenanthroline disulfonate)ruthenium(II) (Na4Ru(bps)3) is a sodium salt of coordination compound. In this form, it is the salt of a sulfonic acid. This compound is an extension of the phenanthroline series of coordination compounds. Ruthenium(II) tris(bathophenanthroline disulfonate), referring to the anionic fragment, is used as a protein dye in biochemistry for differentiating and detecting different proteins in laboratory settings.

<span class="mw-page-title-main">Affinity electrophoresis</span>

Affinity electrophoresis is a general name for many analytical methods used in biochemistry and biotechnology. Both qualitative and quantitative information may be obtained through affinity electrophoresis. Cross electrophoresis, the first affinity electrophoresis method, was created by Nakamura et al. Enzyme-substrate complexes have been detected using cross electrophoresis. The methods include the so-called electrophoretic mobility shift assay, charge shift electrophoresis and affinity capillary electrophoresis. The methods are based on changes in the electrophoretic pattern of molecules through biospecific interaction or complex formation. The interaction or binding of a molecule, charged or uncharged, will normally change the electrophoretic properties of a molecule. Membrane proteins may be identified by a shift in mobility induced by a charged detergent. Nucleic acids or nucleic acid fragments may be characterized by their affinity to other molecules. The methods have been used for estimation of binding constants, as for instance in lectin affinity electrophoresis or characterization of molecules with specific features like glycan content or ligand binding. For enzymes and other ligand-binding proteins, one-dimensional electrophoresis similar to counter electrophoresis or to "rocket immunoelectrophoresis", affinity electrophoresis may be used as an alternative quantification of the protein. Some of the methods are similar to affinity chromatography by use of immobilized ligands.

Free-flow electrophoresis (FFE), also known as carrier-free electrophoresis, is a matrix-free electrophoretic separation technique. FFE is an analogous technique to capillary electrophoresis, with a comparable resolution, that can used for scientific questions, where semi-preparative and preparative amounts of samples are needed. It is used to quantitatively separate samples according to differences in charge or isoelectric point. Because of the versatility of the technique, a wide range of protocols for the separation of samples like rare metal ions, protein isoforms, multiprotein complexes, peptides, organelles, cells, DNA origami, blood serum and nanoparticles exist. The advantage of FFE is the fast and gentle separation of samples dissolved in a liquid solvent without any need of a matrix, like polyacrylamide in gel electrophoresis. This ensures a very high recovery rate since analytes do not adhere to any carrier or matrix structure. Because of its continuous nature and high volume throughput, this technique allows a fast separation of preparative amounts of samples with a very high resolution. Furthermore, the separations can be conducted under native or denaturing conditions.

<span class="mw-page-title-main">Discontinuous electrophoresis</span> Type of laboratory technique

Discontinuous electrophoresis is a type of polyacrylamide gel electrophoresis. It was developed by Ornstein and Davis. This method produces high resolution and good band definition. It is widely used technique for separating proteins according to size and charge.

<span class="mw-page-title-main">SDS-PAGE</span> Biochemical technique

SDS-PAGE is a discontinuous electrophoretic system developed by Ulrich K. Laemmli which is commonly used as a method to separate proteins with molecular masses between 5 and 250 kDa. The combined use of sodium dodecyl sulfate and polyacrylamide gel allows to eliminate the influence of structure and charge, and proteins are separated solely on the basis of differences in their molecular weight.

<span class="mw-page-title-main">Stains-all</span> Dye

Stains-all is a carbocyanine dye, which stains anionic proteins, nucleic acids, anionic polysaccharides and other anionic molecules.

References

  1. Steinhoff, Frederick Louis (1973). Ceramic Industry. Industrial Publications, Incorporated.
  2. Chambers's encyclopaedia. Pergamon Press. 1967.
  3. "Facts about Glass: Silver Stain". Boppard Conservation Project – Glasgow Museums. 18 July 2013.
  4. Historic England (2011). Glass and glazing. Practical Building Conservation. Ashgate Publishing, Ltd. p. 290. ISBN   978-0754645573.
  5. Golgi C (1873). "Sulla struttura della sostanza grigia del cervello". Gazzetta Medica Italiana (Lombardia). 33: 244–246.
  6. Grant G (Oct 2007). "How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal". Brain Res Rev. 55 (2): 490–498. doi:10.1016/j.brainresrev.2006.11.004. PMID   17306375. S2CID   24331507.
  7. Kerenyi L, Gallyas F (1973). "Über Probleme der quantitiven Auswertung der mit physikalischer Entwicklung versilberten Agarelektrophoretogramme". Clin. Chim. Acta. 47 (3): 425–436. doi:10.1016/0009-8981(73)90276-3. PMID   4744834.
  8. Switzer RC 3rd, Merril CR, Shifrin S (Sep 1979). "A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels". Anal. Biochem. 98 (1): 231–237. doi:10.1016/0003-2697(79)90732-2. PMID   94518.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Hempelmann E, Schulze M, Götze O (1984). "Free SH-groups are important for the polychromatic staining of proteins with silver nitrate". Neuhof V (Ed)Electrophoresis '84, Verlag Chemie Weinheim 1984: 328–330.
  10. Schwint OA, Labraga M, Cervino CO, et al. (2004). "A modification of the staining technique of reticular fibres for image analysis of the cardiac collagen network". Cardiovasc. Pathol. 13 (4): 213–20. doi:10.1016/S1054-8807(03)00153-4. PMID   15210137.
  11. Barnini S, Dodi C, Campa M (2004). "Enhanced resolution of random amplified polymorphic DNA genotyping of Pseudomonas aeruginosa". Lett. Appl. Microbiol. 39 (3): 274–7. doi: 10.1111/j.1472-765X.2004.01576.x . PMID   15287874.
  12. Kerényi L, Gallyas F (September 1973). "[Errors in quantitative estimations on agar electrophoresis using silver stain]". Clin. Chim. Acta. 47 (3): 425–36. doi:10.1016/0009-8981(73)90276-3. PMID   4744834.
  13. Merril CR, Switzer RC, Van Keuren ML (1979). "Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain". Proc Natl Acad Sci U S A. 76 (9): 4335–9. Bibcode:1979PNAS...76.4335M. doi: 10.1073/pnas.76.9.4335 . PMC   411569 . PMID   92027.
  14. R. C. Switzer, C. R. Merril, S. Shifrin (September 1979), "A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels", Anal Biochem (in German), vol. 98, no. 1, pp. 231–237, doi:10.1016/0003-2697(79)90732-2, PMID   94518 {{citation}}: CS1 maint: multiple names: authors list (link)
  15. Rabilloud T, et al. (1988). "Improvement and simplification of low-background silver staining of proteins by using sodium dithionite". Electrophoresis. 9 (6): 288–291. doi:10.1002/elps.1150090608. PMID   2466660. S2CID   33007991.
  16. Rabilloud T (1992). "A comparison between low background silver diammine and silver nitrate protein stains". Electrophoresis. 13 (7): 429–439. doi:10.1002/elps.1150130190. PMID   1425556. S2CID   43084621.
  17. Lelong C, Chevallet M, Luche S, Rabilloud T (2009). Silver staining of proteins in 2DE gels (PDF). Methods Mol Biol. Vol. 519. pp. 339–350. doi:10.1007/978-1-59745-281-6_21. ISBN   978-1-58829-937-6. PMID   19381593. S2CID   52820065.
  18. Blum H, Beier H, Gross HJ (1987). "Improved silver staining of plant protein, RNA & DNA in PAA gels". Electrophoresis. 8: 93–99. doi:10.1002/elps.1150080203. S2CID   84471792.
  19. Dubray G, Bezard G (1982). "A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels". Anal. Biochem. 119 (2): 325–329. doi:10.1016/0003-2697(82)90593-0. PMID   6176144.
  20. E. Hempelmann, M. Schulze, O. Götze: Free SH-groups are important for the polychromatic staining of proteins with silver nitrate. In: V. Neuhof (Editor): Electrophoresis. Verlag Chemie, Weinheim, 1984, pp. 328–330.
  21. Ochs D (1983). "Protein contaminants of sodium dodecyl sulfate-polyacrylamide gels". Anal Biochem. 135 (2): 470–4. doi:10.1016/0003-2697(83)90714-5. PMID   6197906.
  22. Hempelmann E, Götze O (1984). "Characterization of membrane proteins by polychromatic silver staining". Hoppe-Seyler's Z Physiol Chem. 365: 241–242.