A random-dot stereogram (RDS) is stereo pair of images of random dots that, when viewed with the aid of a stereoscope, or with the eyes focused on a point in front of or behind the images, produces a sensation of depth due to stereopsis, with objects appearing to be in front of or behind the display level.
The random-dot stereogram technique, known since 1919, was elaborated on by Béla Julesz, described in his 1971 book, Foundations of Cyclopean Perception .
Later concepts, involving single images, not necessarily consisting of random dots, and more well known to the general public, are autostereograms.
In 1840, Sir Charles Wheatstone developed the stereoscope. Using it, two photographs, taken a small horizontal distance apart, could be viewed one to each eye so that the objects in the photograph appeared to be three-dimensional in a three-dimensional scene.
Around 1956, Béla Julesz initiated a project at Bell Labs aimed at identifying patterns within the output of random number generators. He decided to try mapping the numbers into images and using the pattern-detecting capabilities of the human visual system to look for a lack of randomness. [1] Julesz noticed that two identical random images when viewed through a stereoscope, appeared as if they were projected onto a uniform flat surface. He experimented with the image pair by shifting a square area in the center of one of the images by a small amount. When he viewed this pair through the stereoscope, the square appeared to rise out from the page.
The discovery of the random dot stereogram was intriguing not just for its ability to create depth sensations in printed images but also for its implications in cognitive science and the study of perception.
The random dot stereogram provided insight on how stereo vision is processed by the human brain. According to Ralph Siegel, Julesz had "unambiguously demonstrated that stereoscopic depth could be computed in the absence of any identifiable objects, in the absence of any perspective, in the absence of any cues available to either eye alone." [1]
In his 1971 book, Julesz termed this cyclopean perception based on his whimsical notion that the depth could be seen only by a single, cyclopean eye, similar to the single eye of a cyclops.
About 5% of individuals are unable to perceive depth in random-dot stereograms due to various disorders of binocular vision. These individuals can be identified with random-dot stereotests. The stereoacuity is measured from the patient's ability to identify forms from random dot backgrounds, as presented on several plates or pages of a book.
The randot stereotest is a vectograph random dot stereotest. It is frequently used for detecting amblyopia, strabismus and suppression, and for assessing stereoacuity. The Randot test can measure stereoacuity to 20 seconds of arc. [2]
The randot stereotest is more sensitive to monocular blur than real depth stereotests such as the "Frisby test". [3]
The TNO random dot stereotest (short: TNO stereo test or TNO test) is similar to the randot stereotest but is an anaglyph in place of a vectograph; that is, the patient wears red-green glasses (in place of the polarizing glasses used in the randot stereotest). Like other random dot stereotests, the TNO test offers no monocular clues. [4]
Observers' performance in recognizing the figure present in a stereogram in the presence of statistical noise has been found to be higher for a stereogram that consists in black and white dots on a grey background compared to a similar stereogram with only white (or only black) dots on a grey background. [5] [6]
The name random dot stereogram specifically refers to pairs of images based on random dots. Additional work by Christopher Tyler and Maureen Clarke led to their inventing single images yielding depth without a stereoscope. These are known as single image random dot stereograms (SIRDS), or random dot autostereograms. [7]
Replacing the random dot base pattern with an image or texture gives the form that made the single image stereogram known to the general public, through the Magic Eye series of books.
Dynamic random-dot stereograms consist of a moving stereoscopic (cyclopean) form made of moving random dots, camouflaged by further random dots. The observer is to make a perceptual judgment about the shape and/or motion of the dichoptically presented moving form.
When presented with a dynamic random dot stereogram with stereoscopic (cyclopean) motion stimuli, [8] stereoscopic motion is perceived by persons with normal binocular vision and more generally by those who have sufficient binocular vision for the task.
Dynamic random-dot stereograms containing binocular motion stimuli can be designed to test whether someone has at least rudimentary stereopsis. One study found that in strabismic patients a dynamic random dot stereogram yielded a significantly higher rate detection rate for stereopsis than the Titmus fly stereotest. [9]
The process used to develop the first random-dot stereogram is illustrated below.
1. Create an image of suitable size. Fill it with random dots. Duplicate the image.
2. Select a region in one image, in this case, in the right image.
3. Shift this region horizontally by one or two dot diameters and fill in the empty region with new random dots. The stereogram is complete.
To view the stereogram, use a stereoscope to present the left image to the left eye and the right image to the right eye or focus on a point behind the image to achieve the same thing. (How to achieve this wall-eyed position of the eyes is described in Autostereogram). The shifted region of random dots will appear as a small, central, square area closer to your eyes than the larger, surrounding, rectangular area.
The shifted region produces the binocular disparity necessary to give a sensation of depth. A small shift yields a small amount of depth; a larger shift yields a larger amount of depth. If the shift is in the opposite horizontal direction, the depth will be reversed: The central, square area will appear as a square hole to a surface father from the eyes than the larger, surrounding, rectangular area. (A simple way to achieve this with the example stereogram is to adopt a cross-eyed position of the eyes; this presents the left image to the right eye and the right image to the left eye.)
In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.
Stereoscopy is a technique for creating or enhancing the illusion of depth in an image by means of stereopsis for binocular vision. The word stereoscopy derives from Greek στερεός (stereos) 'firm, solid', and σκοπέω (skopeō) 'to look, to see'. Any stereoscopic image is called a stereogram. Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope.
Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.
An autostereogram is a two-dimensional (2D) image that can create the optical illusion of a three-dimensional (3D) scene. Autostereograms use only one image to accomplish the effect while normal stereograms require two. The 3D scene in an autostereogram is often unrecognizable until it is viewed properly, unlike typical stereograms. Viewing any kind of stereogram properly may cause the viewer to experience vergence-accommodation conflict.
Amblyopia, also called lazy eye, is a disorder of sight in which the brain fails to fully process input from one eye and over time favors the other eye. It results in decreased vision in an eye that typically appears normal in other aspects. Amblyopia is the most common cause of decreased vision in a single eye among children and younger adults.
Binocular rivalry is a phenomenon of visual perception in which perception alternates between different images presented to each eye.
Béla Julesz was a Hungarian-born American visual neuroscientist and experimental psychologist in the fields of visual and auditory perception.
Christopher William Tyler is a neuroscientist, creator of the autostereogram, and is the Head of the Brain Imaging Center at the Smith-Kettlewell Eye Research Institute He also holds a professorship at City University of London.
Cyclopean image is a single mental image of a scene created by the brain through the process of combining two images received from both eyes. The mental process behind the Cyclopean image is crucial to stereo vision. Autostereograms take advantage of this process in order to trick the brain to form an apparent Cyclopean image from seemingly random patterns. These random patterns often appear in daily life, such as in art, children's books, and architecture.
Stereopsis is the component of depth perception retrieved by means of binocular disparity through binocular vision. It is not the only contributor to depth perception, but it is a major one. Binocular vision occurs because each eye receives a different image due to their slightly different positions in one's head. These positional differences are referred to as "horizontal disparities" or, more generally, "binocular disparities". Disparities are processed in the visual cortex of the brain to yield depth perception. While binocular disparities are naturally present when viewing a real three-dimensional scene with two eyes, they can also be simulated by artificially presenting two different images separately to each eye using a method called stereoscopy. The perception of depth in such cases is also referred to as "stereoscopic depth".
Binocular disparity refers to the difference in image location of an object seen by the left and right eyes, resulting from the eyes’ horizontal separation (parallax). The mind uses binocular disparity to extract depth information from the two-dimensional retinal images in stereopsis. In computer vision, binocular disparity refers to the difference in coordinates of similar features within two stereo images.
Stereoblindness is the inability to see in 3D using stereopsis, or stereo vision, resulting in an inability to perceive stereoscopic depth by combining and comparing images from the two eyes.
A 3D stereo view is the viewing of objects through any stereo pattern.
Stereoscopic depth rendition specifies how the depth of a three-dimensional object is encoded in a stereoscopic reconstruction. It needs attention to ensure a realistic depiction of the three-dimensionality of viewed scenes and is a specific instance of the more general task of 3D rendering of objects in two-dimensional displays.
Wiggle stereoscopy is an example of stereoscopy in which left and right images of a stereogram are animated. This technique is also called wiggle 3-D, wobble 3-D, wigglegram, or sometimes Piku-Piku.
Stereoscopic acuity, also stereoacuity, is the smallest detectable depth difference that can be seen in binocular vision.
Stereopsis recovery, also recovery from stereoblindness, is the phenomenon of a stereoblind person gaining partial or full ability of stereo vision (stereopsis).
Binocular neurons are neurons in the visual system that assist in the creation of stereopsis from binocular disparity. They have been found in the primary visual cortex where the initial stage of binocular convergence begins. Binocular neurons receive inputs from both the right and left eyes and integrate the signals together to create a perception of depth.
Stereoscopic motion, as introduced by Béla Julesz in his book Foundations of Cyclopean Perception of 1971, is a translational motion of figure boundaries defined by changes in binocular disparity over time in a real-life 3D scene, a 3D film or other stereoscopic scene. This translational motion gives rise to a mental representation of three dimensional motion created in the brain on the basis of the binocular motion stimuli. Whereas the motion stimuli as presented to the eyes have a different direction for each eye, the stereoscopic motion is perceived as yet another direction on the basis of the views of both eyes taken together. Stereoscopic motion, as it is perceived by the brain, is also referred to as cyclopean motion, and the processing of visual input that takes place in the visual system relating to stereoscopic motion is called stereoscopic motion processing.
Vergence-accommodation conflict (VAC), also known as accommodation-vergence conflict, is a visual phenomenon that occurs when the brain receives mismatching cues between vergence and accommodation of the eye. This commonly occurs in virtual reality devices, augmented reality devices, 3D movies, and other types of stereoscopic displays and autostereoscopic displays. The effect can be unpleasant and cause eye strain.