Rankine Lecture

Last updated

The Rankine lecture is an annual lecture organised by the British Geotechnical Association named after William John Macquorn Rankine, an early contributor to the theory of soil mechanics.

Contents

This should not be confused with the biennial BGA Géotechnique Lecture.

The Rankine Lecture is held in March each year. In even-numbered years, the lecturer is from the UK. In odd-numbered years, the lecturer is from outside the UK. Each lecture is usually published [1] in Géotechnique. [2]

List of Rankine Lecturers

NoYEARLECTURERSUBJECTGéotechniqueAFFILIATION
11961 A. Casagrande Control of seepage through foundations and abutments of dams [3] 11(3) 161-181 Harvard University
21962 L. F. Cooling Field measurements in soil mechanics [4] 12(2) 77-103 Building Research Establishment
31963 A. Mayer Recent work in rock mechanics [5] 13(2) 99-118
41964 A. W. Skempton Long-term stability of clay slopes [6] 14(2) 77-101 Imperial College
51965 N. M. Newmark Effects of earthquakes on dams and embankments [7] 15(2) 139-159 University of Illinois at Urbana-Champaign
61966 A. W. Bishop The strength of soils as engineering materials [8] 16(2) 91-128 Imperial College
71967 L. Bjerrum Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings [9] 17(2) 83-117 Norwegian Geotechnical Institute
81968 R. Glossop The rise of geotechnology and its influence on engineering practice [10] 18(2) 107-150 John Mowlem and Co., Ltd
91969 R. B. Peck Advantages and limitations of the observational method in applied soil mechanics [11] 19(2) 171-187 University of Illinois
101970 K. H. Roscoe The influence of strains in soil mechanics [12] 20(2) 129-170 University of Cambridge
111971 J. C. Jaeger Friction of rocks and stability of rock slopes [13] 21(2) 97-134 Australian National University, Canberra
121972 P. W. Rowe The relevance of soil fabric to site investigation practice [14] 22(2) 195-300 University of Manchester
131973 T. W. Lambe Predictions in soil engineering [15] 23(2) 151-201 Massachusetts Institute of Technology
141974 R. E. Gibson The analytical method in soil mechanics [16] 24(2) 115-139 King's College, London
151975 J. Kérisel Old structures in relation to soil conditions [17] 25(3) 433-482 Simecsol Études
161976 A. C. Meigh The Triassic rocks, with particular reference to predicted and observed performance of some major foundations [18] 26(3) 393-451 Soil Mechanics Limited
171977 V. F. B. de Mello Reflections on design decisions of practical significance to embankment dams [19] 27(3) 281-354Private Consultant, Brazil
181978 W. H. Ward Ground supports for tunnels in weak rocks [20] 28(2) 135-170 Building Research Establishment
191979 H. Bolton Seed Considerations in the earthquake-resistant design of earth and rockfill dams [21] 29(3) 215-262 University of California, Berkeley
201980 A. N. Schofield Cambridge geotechnical centrifuge operations [22] 30(3) 227-267 University of Cambridge
211981 N. R. Morgenstern Geotechnical engineering and frontier resource development [23] 31(3) 305-365 University of Alberta
221982 D. J. Henkel Geology, geomorphology and geotechnics [24] 32(3) 175-194 Ove Arup & Partners
231983 E. Hoek Strength of jointed rock masses [25] 33(3) 187-222 Golder Associates, Vancouver
241984 C. P. Wroth The interpretation of in situ soil tests [26] 34(4) 449-488 University of Oxford
251985 N. Janbu Soil models in offshore engineering [27] 35(3) 241-280 Norwegian Institute of Technology
261986 A. D. M. Penman On the embankment dam [28] 36(3) 303-347 Geotechnical Engineering Consultant, Harpenden
271987 R. F. Scott Failure [29] 37(4) 423-466 California Institute of Technology
281988 H. B. Sutherland Uplift resistance in soils [30] 38(4) 493-515 University of Glasgow Trust
291989 H. G. Poulos Pile behaviour - theory and application [31] 39(3) 365-415 University of Sydney
301990 J. B. Burland On the compressibility and shear strength of natural clays [32] 40(3) 329-378 Imperial College
311991 J. K. Mitchell Conduction phenomena: from theory to geotechnical practice [33] 41(3) 299-339 University of California, Berkeley
321992B. SimpsonRetaining structures: displacement and design [34] 42(4) 541-576 Ove Arup & Partners
331993K. IshiharaLiquefaction and flow failure during earthquakes [35] 43(3) 351-414 University of Tokyo
341994 P. R. Vaughan Assumption, prediction and reality in geotechnical engineering [36] 44(4) 573-608 Imperial College
351995 R. E. Goodman Block theory and its application [37] 45(3) 383-422 University of California, Berkeley
361996 S. F. Brown Soil mechanics in pavement engineering [38] 46(3) 383-425 University of Nottingham
371997 G. E. Blight Interactions between the atmosphere and the Earth [39] 47(4) 715-766 University of Witwatersrand
381998 D. W. Hight Soil characterisation: the importance of structure and anisotropy- Imperial College
391999 S. Leroueil Natural slopes and cuts: movement and failure mechanisms [40] [41] 51(3) 197-243 Université Laval, Ste-Foy, Québec
402000 J. H. Atkinson Non-linear soil stiffness in routine design [42] [43] 50(5) 487-507 City University, London
412001 H. Brandl Energy foundations and other thermo-active ground structures [44] [45] 56(2) 81-122 Vienna University of Technology, Austria
422002 D. M. Potts Numerical analysis: a virtual dream or practical reality? [46] [47] 53(6) 535-572 Imperial College
432003 M. F. Randolph Science and empiricism in pile foundation design [48] [49] 53(10) 847-874 University of Western Australia
442004 N. N. Ambraseys Engineering, seismology and soil mechanics- Imperial College
452005 R. K. Rowe Long term performance of contaminant barrier systems [50] [51] 55(9) 631-678 Queen's University at Kingston, Ontario, Canada
462006 R. J. Mair Tunnelling and geotechnics - new horizons [52] [53] 58(9) 695-736 University of Cambridge
472007 A. Gens Soil-environment interactions in geotechnical engineering [54] [55] 60(1) 3-74 Universitat Politècnica de Catalunya
482008 J. A. Charles The engineering behaviour of fill - the use, misuse and disuse of case histories [56] [57] 58(7) 541-570 Building Research Establishment
492009 T. D. O'Rourke Geohazards & Large Geographically Distributed Systems [58] [59] 60(7) 505-543 Cornell University
502010 C. R. I. Clayton Stiffness at small strain - research and practice [60] [61] 61(1) 5-37 University of Southampton
512011 S. W. Sloan Geotechnical Stability Analysis [62] [63] 63(7) 531-571 University of Newcastle, Australia
522012 M. D. Bolton Performance-based design in geotechnical engineering University of Cambridge
532013 M. Jamiolkowski Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility [64] 64(8) 590-619 Politecnico di Torino
542014 G. T. Houlsby Interactions in Offshore Foundation Design [65] [66] [67] 66(10) 791-825 University of Oxford
552015 S. Lacasse Hazard, Risk and Reliability in Geotechnical Practice [68] Norwegian Geotechnical Institute
562016 R. Jardine Geotechnics and Energy [69] [70] 70(1) 3-59 Imperial College
572017 E. Alonso Triggering and Motion of Landslides71(1) 3-59 Universitat Politècnica de Catalunya
582018 N. O'Riordan Dynamic soil-structure interaction [71] ARUP
592019 G. Gazetas Benefits of Unconventional Seismic Foundation Design [72] [73] National Technical University of Athens
602022 (2020) S. Jefferis The Unusual and the Unexpected in Geotechnical Engineering [74] [75] Environmental Geotechnics Limited
612023 John P. Carter [76] [77] Constitutive Modelling in Computational Geomechanics [78] University of Newcastle, Australia
622024 Lidija Zdravković [79] [80] Imperial College London
632025

See also

Related Research Articles

<span class="mw-page-title-main">Peter Rolfe Vaughan</span>

Peter Rolfe Vaughan ACGI, DIC, FREng, FICE, FCGI, MASCE, FGS, was Emeritus Professor of Ground Engineering in the Geotechnics department of Imperial College London.

<span class="mw-page-title-main">Telford Medal</span> Civil engineering prize

The Telford Medal is a prize awarded by the British Institution of Civil Engineers (ICE) for a paper or series of papers. It was introduced in 1835 following a bequest made by Thomas Telford, the ICE's first president. It can be awarded in gold, silver or bronze; the Telford Gold Medal is the highest award the institution can bestow.

<span class="mw-page-title-main">John Burland</span> South African engineering academic in the UK

John Boscawen Burland is an Emeritus Professor and Senior Research Investigator at the Department of Civil and Environmental Engineering of Imperial College London.

Sarada Kanta Sarma is a geotechnical engineer, emeritus reader of engineering seismology and senior research investigator at Imperial College London. He has developed a method of seismic slope stability analysis which is named after him, the Sarma method.

Thomas Denis O’Rourke is an American educator, engineer and serves as the Thomas R. Biggs Professor of civil & environmental engineering at the Cornell University College of Engineering. O’Rourke took his Bachelor of Science in civil engineering at Cornell's engineering college in 1970 and his doctorate at the University of Illinois Urbana-Champaign in 1975.

<span class="mw-page-title-main">Andrew N. Schofield</span>

Andrew Noel Schofield FRS FREng is a British soil mechanics engineer and an emeritus professor of geotechnical engineering at the University of Cambridge.

The Sarma method is a method used primarily to assess the stability of soil slopes under seismic conditions. Using appropriate assumptions the method can also be employed for static slope stability analysis. It was proposed by Sarada K. Sarma in the early 1970s as an improvement over the other conventional methods of analysis which had adopted numerous simplifying assumptions.

Harry George Poulos is an Australian of Greek descent civil engineer specialising in geotechnical engineering and soil mechanics, internationally known as an expert on soil behaviour and pile foundations.

David Malcolm Potts is a professor of Analytical Soil Mechanics at Imperial College London and the head of the Geotechnics Section at Imperial College. He has been a member of the academic staff at Imperial College since 1979, responsible for teaching the use of analytical methods in geomechanics and the design of slopes and earth retaining structures, both at undergraduate and postgraduate levels.

Guy Tinmouth Houlsby FREng is Professor of Civil Engineering and former Head of the Department of Engineering Science at the University of Oxford. He specialises in Geotechnical Engineering and more particularly in offshore foundations.

Charles Peter Wroth (1929–1991) was a British Civil Engineer, a world pioneer in Geotechnical Engineering and Soil Mechanics. He led the design and construction of the Hammersmith flyover.

Kenneth Harry Roscoe (1914–1970) was a British civil engineer who made tremendous contributions to the plasticity theories of soil mechanics.

<span class="mw-page-title-main">Malcolm Bolton</span> British soil mechanics engineer and professor

Malcolm David Bolton is a British soil mechanics engineer and professor of geotechnical engineering at the University of Cambridge.

The British Geotechnical Association is a learned 'Associated Society' of the Institution of Civil Engineers, based in London, England, and a registered UK charity. It provides a focal point for organisations and individuals interested in geotechnical engineering.

<span class="mw-page-title-main">Nicholas Ambraseys</span> Greek seismologist (1929-2012)

Nicholas Neocles Ambraseys FICE FREng was a Greek engineering seismologist. He was emeritus professor of engineering seismology and senior research fellow at Imperial College London. For many years Ambraseys was considered the leading figure and an authority in earthquake engineering and seismology in Europe.

John Conrad Jaeger, FRS was an Australian mathematical physicist.

<span class="mw-page-title-main">David Hight</span> British geotechnical engineer (born 1943)

David William Hight is a senior consultant at the Geotechnical Consulting Group, a company providing high-level expertise in the field of geotechnical engineering and well known for bridging the gap between research and engineering practice.

The Géotechnique lecture is an biennial lecture on the topic of soil mechanics, organised by the British Geotechnical Association named after its major scientific journal Géotechnique.

David Muir Wood is an academic working in the field of geomechanics and soil mechanics, famous for having pioneered advances in mathematical modelling of soils, informed by experimental observation. The hallmark of his modelling efforts has been to formulate elegant models that capture the essence of the material response while being accessible to practitioners of Geotechnical engineering.

<span class="mw-page-title-main">Geoffrey Eustace Blight</span> South African geotechnical engineer

Geoffrey Eustace Blight was a professor in the School of Civil Engineering at the University of Witwatersrand (Wits), serving twice as head of department.

References

  1. Géotechnique Rankine-lecture papers
  2. Géotechnique
  3. Casagrande, A. (1961). "Control of Seepage through Foundations and Abutments of Dams*". Géotechnique. 11 (3): 161–182. doi:10.1680/geot.1961.11.3.161.
  4. Cooling, L. F. (1962). "Field Measurements in Soil Mechanics". Géotechnique. 12 (2): 77–104. doi: 10.1680/geot.1962.12.2.77 .
  5. Mayer, A. (1963). "Recent Work in Rock Mechanics". Géotechnique. 13 (2): 99–120. doi: 10.1680/geot.1963.13.2.99 .
  6. Skempton, A. W. (1964). "Long-term stability of clay slopes". Géotechnique. 14 (2): 77–102. doi: 10.1680/geot.1964.14.2.77 .
  7. Newmark, N. M. (1965). "Effects of Earthquakes on Dams and Embankments". Géotechnique. 15 (2): 139–160. doi: 10.1680/geot.1965.15.2.139 .
  8. Bishop, A. W. (1966). "The Strength of Soils as Engineering Materials". Géotechnique. 16 (2): 91–130. doi: 10.1680/geot.1966.16.2.91 .
  9. Bjerrum, L. (1967). "Engineering Geology of Norwegian Normally-Consolidated Marine Clays as Related to Settlements of Buildings". Géotechnique. 17 (2): 83–118. doi:10.1680/geot.1967.17.2.83.
  10. Glossop, R. (1968). "The Rise of Geotechnology and its Influence on Engineering Practice". Géotechnique. 18 (2): 107–150. doi:10.1680/geot.1968.18.2.107.
  11. Peck, R. B. (1969). "Advantages and Limitations of the Observational Method in Applied Soil Mechanics". Géotechnique. 19 (2): 171–187. doi: 10.1680/geot.1969.19.2.171 .
  12. Roscoe, K. H. (1970). "The Influence of Strains in Soil Mechanics". Géotechnique. 20 (2): 129–170. doi:10.1680/geot.1970.20.2.129.
  13. Jaeger, J. C. (1971). "Friction of Rocks and Stability of Rock Slopes". Géotechnique. 21 (2): 97–134. doi:10.1680/geot.1971.21.2.97.
  14. Rowe, P. W. (1972). "The relevance of soil fabric to site investigation practice". Géotechnique. 22 (2): 195–300. doi:10.1680/geot.1972.22.2.195.
  15. Lambe, T. W. (1973). "Predictions in soil engineering". Géotechnique. 23 (2): 151–202. doi: 10.1680/geot.1973.23.2.151 .
  16. Gibson, R. E. (1974). "The analytical method in soil mechanics". Géotechnique. 24 (2): 115–140. doi: 10.1680/geot.1974.24.2.115 .
  17. Kérisel, J. (1975). "Old structures in relation to soil conditions". Géotechnique. 25 (3): 433–483. doi: 10.1680/geot.1975.25.3.433 .
  18. Meigh, A. C. (1976). "The Triassic rocks, with particular reference to predicted and observed performance of some major foundations". Géotechnique. 26 (3): 393–452. doi: 10.1680/geot.1976.26.3.393 .
  19. de Mello, V. F. B. (1977). "Reflections on design decisions of practical significance to embankment dams". Géotechnique. 27 (3): 281–355. doi: 10.1680/geot.1977.27.3.281 .
  20. Ward, W. H. (1978). "Ground supports for tunnels in weak rocks". Géotechnique. 28 (2): 135–136. doi: 10.1680/geot.1978.28.2.135 .
  21. Bolton Seed, H. (1979). "Considerations in the earthquake-resistant design of earth and rockfill dams". Géotechnique. 29 (3): 215–263. doi:10.1680/geot.1979.29.3.215.
  22. Schofield, A. N. (1980). "Cambridge Geotechnical Centrifuge Operations". Géotechnique. 30 (3): 227–268. doi: 10.1680/geot.1980.30.3.227 .
  23. Morgenstern, N. R. (1981). "Geotechnical engineering and frontier resource development". Géotechnique. 31 (3): 305–365. doi: 10.1680/geot.1981.31.3.305 .
  24. Henkel, D.J. (1982). "Geology, geomorphology and geotechnics". Géotechnique. 32 (3): 175–194. doi:10.1680/geot.1982.32.3.175.
  25. Hoek, E. (1984). "Strength of jointed rock masses". Géotechnique. 34 (3): 187–223. doi: 10.1680/geot.1983.33.3.187 .
  26. Wroth, C.P. (1984). "The interpretation of in situ soil tests". Géotechnique. 34 (4): 449–489. doi: 10.1680/geot.1984.34.4.449 .
  27. Janbu, N. (1985). "Soil models in offshore engineering". Géotechnique. 35 (3): 241–281. doi:10.1680/geot.1985.35.3.241.
  28. Penman, A.D.M. (1986). "On the embankment dam". Géotechnique. 36 (3): 303–348. doi: 10.1680/geot.1986.36.3.303 .
  29. Scott, R.F. (1987). "Failure". Géotechnique. 37 (4): 423–466. doi: 10.1680/geot.1987.37.4.423 .
  30. Sutherland, H.B. (1988). "Uplift resistance in soils". Géotechnique. 38 (4): 493–516. doi:10.1680/geot.1988.38.4.493.
  31. Poulos, H. G. (1989). "Pile behaviour—theory and application". Géotechnique. 39 (3): 365–415. doi:10.1680/geot.1989.39.3.365.
  32. Burland, J. B. (1990). "On the compressibility and shear strength of natural clays". Géotechnique. 40 (3): 329–378. doi:10.1680/geot.1990.40.3.329.
  33. Mitchell, J. K. (1991). "Conduction phenomena: from theory to geotechnical practice". Géotechnique. 41 (3): 299–340. doi:10.1680/geot.1991.41.3.299.
  34. Simpson, B. (1992). "Retaining structures: Displacement and design". Géotechnique. 42 (4): 541–576. doi: 10.1680/geot.1992.42.4.541 .
  35. Ishihara, K. (1993). "Liquefaction and flow failure during earthquakes". Géotechnique. 43 (3): 351–451. doi:10.1680/geot.1993.43.3.351.
  36. Vaughan, P.R. (1994). "Assumption, prediction and reality in geotechnical engineering". Géotechnique. 54 (5): 573–609. doi:10.1680/geot.1994.44.4.573.
  37. Goodman, R. E. (1995). "Block theory and its application". Géotechnique. 45 (3): 383–423. doi:10.1680/geot.1995.45.3.383.
  38. Brown, S. F. (1996). "The Rankine Lecture". Géotechnique. 46 (3): 381–382. doi:10.1680/geot.1996.46.3.381.
  39. Blight, G. E. (1997). "The Rankine Lecture". Géotechnique. 47 (4): 713–767. doi:10.1680/geot.1997.47.4.713.
  40. "Introduction for the 39th Rankine Lecture". Géotechnique. 51 (3): 195. 2001. doi:10.1680/geot.2001.51.3.195.
  41. Leroueil, S. (2001). "Natural slopes and cuts: Movement and failure mechanisms". Géotechnique. 51 (3): 197–243. doi: 10.1680/geot.2001.51.3.197 .
  42. "Introduction for the 40th Rankine Lecture". Géotechnique. 50 (5): 485–486. 2000. doi:10.1680/geot.2000.50.5.485.
  43. Atkinson, J. H. (2000). "Non-linear soil stiffness in routine design". Géotechnique. 50 (5): 487–508. doi:10.1680/geot.2000.50.5.487.
  44. "Introduction for 41st Rankine Lecture 21 March 2001". Géotechnique. 56 (2): 79. 2006. doi:10.1680/geot.2006.56.2.79.
  45. Brandl, H. (2006). "Energy foundations and other thermo-active ground structures". Géotechnique. 56 (2): 81–122. doi:10.1680/geot.2006.56.2.81.
  46. "Introduction for the 42nd Rankine Lecture". Géotechnique. 53 (6): 533–534. 2003. doi:10.1680/geot.2003.53.6.533.
  47. Potts, D. M. (2003). "Numerical analysis: A virtual dream or practical reality?". Géotechnique. 53 (6): 535–573. doi: 10.1680/geot.2003.53.6.535 .
  48. "Introduction for 43rd Rankine Lecture 19 March 2003". Géotechnique. 53 (10): 845–846. 2003. doi:10.1680/geot.2003.53.10.845.
  49. Randolph, M. F. (2003). "Science and empiricism in pile foundation design". Géotechnique. 53 (10): 847–875. doi:10.1680/geot.2003.53.10.847.
  50. "Introduction for 45th Rankine Lecture 23 March 2005". Géotechnique. 55 (9): 629–630. 2005. doi:10.1680/geot.2005.55.9.629.
  51. Rowe, R. K. (2005). "Long term performance of contaminant barrier systems". Géotechnique. 55 (9): 631–678. doi:10.1680/geot.2005.55.9.631.
  52. "Introduction for the 46th Rankine Lecture". Géotechnique. 58 (9): 693–694. 2008. doi:10.1680/geot.2008.58.9.693.
  53. Mair, R. J. (2008). "Tunnelling and geotechnics: New horizons". Géotechnique. 58 (9): 695–736. doi:10.1680/geot.2008.58.9.695.
  54. "Introduction for 47th Rankine Lecture 21 March 2007". Géotechnique. 60 (1): 1. 2010. doi:10.1680/geot.9.B.011.
  55. Gens, A. (2010). "Soil-environment interactions in geotechnical engineering". Géotechnique. 60 (1): 3–74. doi:10.1680/geot.9.P.109.
  56. "Introduction for 48th Rankine Lecture 19 March 2008". Géotechnique. 58 (7): 539. 2008. doi:10.1680/geot.2008.58.7.539.
  57. Charles, J. A. (2008). "The engineering behaviour of fill - the use, misuse and disuse of case histories". Géotechnique. 58 (7): 541. doi:10.1680/geot.2008.58.7.541.
  58. O'Rourke, Tom (2010). "Introduction for the 49th Rankine Lecture 18th March 2009". Géotechnique. 60 (7): 503–504. doi:10.1680/geot.2010.60.7.503.
  59. O'Rourke, T. D. (2010). "Geohazards and large, geographically distributed systems". Géotechnique. 60 (7): 505–543. doi:10.1680/geot.2010.60.7.505.
  60. "Introduction for the 50th Rankine Lecture 17 March 2010". Géotechnique. 61 (1): 3–4. 2011. doi:10.1680/geot.2011.61.1.3.
  61. Clayton, C. R. I. (2011). "Stiffness at small strain - research and practice". Géotechnique. 61 (1): 5–37. doi:10.1680/geot.2011.61.1.5.
  62. "Introduction for the 51st Rankine Lecture". Géotechnique. 63 (7): 530. 2011. doi:10.1680/geot.12.RL.002.
  63. Sloan, S. W. (2013). "Geotechnical stability analysis". Géotechnique. 63 (7): 531–571. doi:10.1680/geot.12.RL.001. hdl: 1959.13/1060002 .
  64. Jamiolkowski, M. (2014). "Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility". Géotechnique. 64 (8): 590–618. doi:10.1680/geot.14.RL.002.
  65. "Introduction for the 54th Rankine Lecture". Géotechnique. 66 (10): 789–790. 2016. doi:10.1680/jgeot.15.rl.002.
  66. Houlsby, G. T. (2016). "Interactions in Offshore Foundation Design". Géotechnique. 66 (10): 791–825. doi:10.1680/jgeot.15.rl.001.
  67. BGA 54th Rankine Lecture
  68. BGA 55th Rankine Lecture
  69. Jardine, Richard J. (2020). "Geotechnics, energy and climate change: The 56th Rankine Lecture". Géotechnique. 70: 3–59. doi: 10.1680/jgeot.18.RL.001 .
  70. Hight, David W. (2020). "Introduction for the 56th Rankine Lecture". Géotechnique. 70: 1–2. doi: 10.1680/jgeot.18.RL.002 .
  71. The 58th Rankine Lecture
  72. BGA 59th Rankine Lecture
  73. BGA 59th Rankine Lecture Flyer
  74. 60th Rankine Lecture
  75. Rearranged date for the 60th Rankine Lecture
  76. Professor John Carter announced as 61st Rankine Lecturer
  77. John Carter to deliver 61st Rankine Lecture on soil constitutive modelling
  78. The 61st Rankine Lecture : Constitutive Modelling in Computational Geomechanics by Professor John Carter of the University of Newcastle, Australia
  79. Professor Lidija Zdravković
  80. Professor Lidija Zdravković announced 62nd Rankine Lecturer