Rational motion

Last updated

In kinematics, the motion of a rigid body is defined as a continuous set of displacements. One-parameter motions can be defined as a continuous displacement of moving object with respect to a fixed frame in Euclidean three-space (E3), where the displacement depends on one parameter, mostly identified as time.

Contents

Rational motions are defined by rational functions (ratio of two polynomial functions) of time. They produce rational trajectories, and therefore they integrate well with the existing NURBS (Non-Uniform Rational B-Spline) based industry standard CAD/CAM systems. They are readily amenable to the applications of existing computer-aided geometric design (CAGD) algorithms. By combining kinematics of rigid body motions with NURBS geometry of curves and surfaces, methods have been developed for computer-aided design of rational motions.

These CAD methods for motion design find applications in animation in computer graphics (key frame interpolation), trajectory planning in robotics (taught-position interpolation), spatial navigation in virtual reality, computer-aided geometric design of motion via interactive interpolation, CNC tool path planning, and task specification in mechanism synthesis.

Background

There has been a great deal of research in applying the principles of computer-aided geometric design (CAGD) to the problem of computer-aided motion design. In recent years, it has been well established that rational Bézier and rational B-spline based curve representation schemes can be combined with dual quaternion representation [1] of spatial displacements to obtain rational Bézier and B-spline motions. Ge and Ravani, [2] [3] developed a new framework for geometric constructions of spatial motions by combining the concepts from kinematics and CAGD. Their work was built upon the seminal paper of Shoemake, [4] in which he used the concept of a quaternion [5] for rotation interpolation. A detailed list of references on this topic can be found in [6] and. [7]

Rational Bézier and B-spline motions

Let denote a unit dual quaternion. A homogeneous dual quaternion may be written as a pair of quaternions, ; where . This is obtained by expanding using dual number algebra (here, ).

In terms of dual quaternions and the homogeneous coordinates of a point of the object, the transformation equation in terms of quaternions is given by

where and are conjugates of and , respectively and denotes homogeneous coordinates of the point after the displacement. [7]

Given a set of unit dual quaternions and dual weights respectively, the following represents a rational Bézier curve in the space of dual quaternions.

where are the Bernstein polynomials. The Bézier dual quaternion curve given by above equation defines a rational Bézier motion of degree .

Similarly, a B-spline dual quaternion curve, which defines a NURBS motion of degree 2p, is given by,

where are the pth-degree B-spline basis functions.

A representation for the rational Bézier motion and rational B-spline motion in the Cartesian space can be obtained by substituting either of the above two preceding expressions for in the equation for point transform. In what follows, we deal with the case of rational Bézier motion. The trajectory of a point undergoing rational Bézier motion is given by,

where is the matrix representation of the rational Bézier motion of degree in Cartesian space. The following matrices (also referred to as Bézier Control Matrices) define the affine control structure of the motion:

where .

In the above equations, and are binomial coefficients and are the weight ratios and

In above matrices, are four components of the real part and are four components of the dual part of the unit dual quaternion .

Example

A teapot under Rational Bezier motion of degree 6 with (on the left) unit real weights (
w
^
i
=
1
+
[?]
0
;
i
=
0..3
{\displaystyle {\hat {w}}_{i}=1+\epsilon 0;i=0..3}
) (on the right) non-unit real weights (
w
^
i
=
1
+
[?]
0
;
i
=
0
,
3
{\displaystyle {\hat {w}}_{i}=1+\epsilon 0;i=0,3}
and
w
^
i
=
4
+
[?]
0
;
i
=
1
,
2
{\displaystyle {\hat {w}}_{i}=4+\epsilon 0;i=1,2}
); also shown are affine positions (distorted) as well as the given control positions (in blue color). Rational Bezier motion of degree-6.jpg
A teapot under Rational Bézier motion of degree 6 with (on the left) unit real weights () (on the right) non-unit real weights ( and ); also shown are affine positions (distorted) as well as the given control positions (in blue color).

See also

Related Research Articles

<span class="mw-page-title-main">Bézier curve</span> Curve used in computer graphics and related fields

A Bézier curve is a parametric curve used in computer graphics and related fields. A set of discrete "control points" defines a smooth, continuous curve by means of a formula. Usually the curve is intended to approximate a real-world shape that otherwise has no mathematical representation or whose representation is unknown or too complicated. The Bézier curve is named after French engineer Pierre Bézier (1910–1999), who used it in the 1960s for designing curves for the bodywork of Renault cars. Other uses include the design of computer fonts and animation. Bézier curves can be combined to form a Bézier spline, or generalized to higher dimensions to form Bézier surfaces. The Bézier triangle is a special case of the latter.

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

In mathematics, a geometric algebra is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.

<span class="mw-page-title-main">B-spline</span> Spline function

In the mathematical subfield of numerical analysis, a B-spline or basis spline is a spline function that has minimal support with respect to a given degree, smoothness, and domain partition. Any spline function of given degree can be expressed as a linear combination of B-splines of that degree. Cardinal B-splines have knots that are equidistant from each other. B-splines can be used for curve-fitting and numerical differentiation of experimental data.

<span class="mw-page-title-main">Quaternion</span> Noncommutative extension of the real numbers

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative.

<span class="mw-page-title-main">Quaternion group</span>

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

<span class="mw-page-title-main">Non-uniform rational B-spline</span> Method of representing curves and surfaces in computer graphics

Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces. It offers great flexibility and precision for handling both analytic and modeled shapes. It is a type of curve modeling, as opposed to polygonal modeling or digital sculpting. NURBS curves are commonly used in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE). They are part of numerous industry-wide standards, such as IGES, STEP, ACIS, and PHIGS. Tools for creating and editing NURBS surfaces are found in various 3D graphics and animation software packages.

<span class="mw-page-title-main">Spline (mathematics)</span> Mathematical function defined piecewise by polynomials

In mathematics, a spline is a special function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees.

<span class="mw-page-title-main">Eduard Study</span> German mathematician (1862 – 1930)

Eduard Study, more properly Christian Hugo Eduard Study, was a German mathematician known for work on invariant theory of ternary forms (1889) and for the study of spherical trigonometry. He is also known for contributions to space geometry, hypercomplex numbers, and criticism of early physical chemistry.

In abstract algebra, the biquaternions are the numbers w + xi + yj + zk, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

<span class="mw-page-title-main">Screw theory</span> Mathematical formulation of vector pairs used in physics (rigid body dynamics)

Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms.

In abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers.

<span class="mw-page-title-main">Screw axis</span> Geometric axis of rotation and translation

A screw axis is a line that is simultaneously the axis of rotation and the line along which translation of a body occurs. Chasles' theorem shows that each Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Dual quaternion</span>

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

In mathematics, quaternionic analysis is the study of functions with quaternions as the domain and/or range. Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called.

Isogeometric analysis is a computational approach that offers the possibility of integrating finite element analysis (FEA) into conventional NURBS-based CAD design tools. Currently, it is necessary to convert data between CAD and FEA packages to analyse new designs during development, a difficult task since the two computational geometric approaches are different. Isogeometric analysis employs complex NURBS geometry in the FEA application directly. This allows models to be designed, tested and adjusted in one go, using a common data set.

Aleksandr Petrovich Kotelnikov was a Russian and Soviet mathematician specializing in geometry and kinematics.

The product of exponentials (POE) method is a robotics convention for mapping the links of a spatial kinematic chain. It is an alternative to Denavit–Hartenberg parameterization. While the latter method uses the minimal number of parameters to represent joint motions, the former method has a number of advantages: uniform treatment of prismatic and revolute joints, definition of only two reference frames, and an easy geometric interpretation from the use of screw axes for each joint.

In this article, we discuss certain applications of the dual quaternion algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the planar quaternions.

References

  1. McCarthy, J. M. (1990). An Introduction to Theoretical Kinematics. MIT Press Cambridge, MA, USA. ISBN   978-0-262-13252-7.
  2. Ge, Q. J.; Ravani, B. (1994). "Computer-Aided Geometric Design of Motion Interpolants". Journal of Mechanical Design. 116 (3): 756–762. doi:10.1115/1.2919447.
  3. Ge, Q. J.; Ravani, B. (1994). "Geometric Construction of Bézier Motions". Journal of Mechanical Design. 116 (3): 749–755. doi:10.1115/1.2919446.
  4. Shoemake, K. (1985). "Animating rotation with quaternion curves". Proceedings of the 12th annual conference on Computer graphics and interactive techniques - SIGGRAPH '85. Vol. 19. pp. 245–254. doi: 10.1145/325334.325242 . ISBN   978-0897911665.{{cite book}}: CS1 maint: date and year (link)
  5. Bottema, O.; Roth, B. (1990). Theoretical kinematics (Theoretical kinematics). Dover Publications. ISBN   978-0-486-66346-3.
  6. Röschel, O. (1998). "Rational motion design—a survey". Computer-Aided Design. 30 (3): 169–178. doi:10.1016/S0010-4485(97)00056-0.
  7. 1 2 Purwar, A.; Ge, Q. J. (2005). "On the effect of dual weights in computer-aided design of rational motions". Journal of Mechanical Design. 127 (5): 967–972. doi:10.1115/1.1906263.