The recognition heuristic, originally termed the recognition principle, has been used as a model in the psychology of judgment and decision making and as a heuristic in artificial intelligence. The goal is to make inferences about a criterion that is not directly accessible to the decision maker, based on recognition retrieved from memory. This is possible if recognition of alternatives has relevance to the criterion. For two alternatives, the heuristic is defined as: [1] [2] [3]
If one of two objects is recognized and the other is not, then infer that the recognized object has the higher value with respect to the criterion.
The recognition heuristic is part of the "adaptive toolbox" of "fast and frugal" heuristics proposed by Gigerenzer and Goldstein. It is one of the most frugal of these, meaning it is simple or economical. [3] [4] [5] In their original experiment, Daniel Goldstein and Gerd Gigerenzer quizzed students in Germany and the United States on the populations of both German and American cities. Participants received pairs of city names and had to indicate which city has more inhabitants. In this and similar experiments, the recognition heuristic typically describes about 80–90% of participants' choices, in cases where they recognize one but not the other object (see criticism of this measure below). Surprisingly, American students scored higher on German cities, while German participants scored higher on American cities, despite only recognizing a fraction of the foreign cities. This has been labeled the "less-is-more effect" and mathematically formalized. [6]
The recognition heuristic is posited as a domain-specific strategy for inference. It is ecologically rational to rely on the recognition heuristic in domains where there is a correlation between the criterion and recognition. The higher the recognition validity α for a given criterion, the more ecologically rational it is to rely on this heuristic and the more likely people will rely on it. For each individual, α can be computed by
where C is the number of correct inferences the recognition heuristic would make, computed across all pairs in which one alternative is recognized and the other is not, and W is the number of wrong inferences. Domains in which the recognition heuristic was successfully applied include the prediction of geographical properties (such as the size of cities, mountains, etc.), [1] [2] of sports events (such as Wimbledon and soccer championships [7] [8] [9] ) and elections. [10] Research also shows that the recognition heuristic is relevant to marketing science. Recognition based heuristics help consumers choose which brands to buy in frequently purchased categories. [11] A number of studies addressed the question of whether people rely on the recognition heuristic in an ecologically rational way. For instance, name recognition of Swiss cities is a valid predictor of their population (α = 0.86) but not their distance from the center of Switzerland (α = 0.51). Pohl [12] reported that 89% of inferences accorded with the model in judgments of population, compared to only 54% in judgments of the distance. More generally, there is a positive correlation of r = 0.64 between the recognition validity and the proportion of judgments consistent with the recognition heuristic across 11 studies. [13] Another study by Pachur [14] suggested that the recognition heuristic is more likely a tool for exploring natural rather than induced recognition (i.e. not provoked in a laboratory setting) when inferences have to be made from memory. In one of his experiments, the results showed that there was a difference between participants in an experimental setting vs. a non-experimental setting.
If α > β, and α, β are independent of n, then a less-is-more effect will be observed. Here, β is the knowledge validity, measured as C/(C+W) for all pairs in which both alternatives are recognized, and n is the number of alternatives an individual recognizes. A less-is-more effect means that the function between accuracy and n is inversely U-shaped rather than monotonically increasing. Some studies reported less-is-more effects empirically among two, three, or four alternatives [1] [2] [15] and in group decisions [16] ), whereas others failed to do so, [9] [12] possibly because the effect is predicted to be small (see Katsikopoulos [17] ).
Smithson explored the "less-is-more effect" (LIME) with the recognition heuristic and challenges some of the original assumptions. The LIME occurs when a "recognition-dependent agent has a greater probability of choosing the better item than a more knowledgeable agent who recognizes more items." A mathematical model is used in describing the LIME and Smithson’s study used it and attempted to modify it. The study was meant to mathematically provide an understanding of when the LIME occurs and explain the implications of the results. The main implication is "that the advantage of the recognition cue depends not only on the cue validities, but also on the order in which items are learned". [18]
The recognition heuristic can also be depicted using neuroimaging techniques. A number of studies have shown that people do not automatically use the recognition heuristic when it can be applied, but evaluate its ecological validity. It is less clear, however, how this evaluation process can be modeled. A functional magnetic resonance imaging study tested whether the two processes, recognition and evaluation, can be separated on a neural basis. [19] Participants were given two tasks; the first involved only a recognition judgment ("Have you ever heard of Modena? Milan?"), while the second involved an inference in which participants could rely on the recognition heuristic ("Which city has the larger population: Milan or Modena?"). For mere recognition judgments, activation in the precuneus, an area that is known from independent studies to respond to recognition confidence, [20] was reported. In the inference task, precuneus activation was also observed, as predicted, and activation was detected in the anterior frontomedian cortex (aFMC), which has been linked in earlier studies to evaluative judgments and self-referential processing. The aFMC activation could represent the neural basis of this evaluation of ecological rationality.
Some researchers have used event-related potentials (ERP) to test psychological mechanisms behind the recognition heuristic. Rosburg, Mecklinger, and Frings used a standard procedure with a city-size comparison task, similar to that used by Goldstein and Gigerenzer. They used ERP and analyzed familiarity-based recognition occurring 300-450 milliseconds after stimulus onset in order to predict the participants’ decisions. Familiarity-based recognition processes are relatively automatic and fast so these results provide evidence that simple heuristics like the recognition heuristic utilize basic cognitive processes. [21]
Research on the recognition heuristic has sparked a number of controversies.
The recognition heuristic is a model that relies on recognition only. This leads to the testable prediction that people who rely on it will ignore strong, contradicting cues (i.e., do not make trade-offs; so-called noncompensatory inferences). In an experiment by Daniel M. Oppenheimer participants were presented with pairs of cities, which included actual cities and fictional cities. Although the recognition heuristic predicts that participants would judge the actual (recognizable) cities to be larger, participants judged the fictional (unrecognizable) cities to be larger, showing that more than recognition can play a role in such inferences. [22]
Newell & Fernandez [4] performed two experiments to try to test the claims that the recognition heuristic is distinguished from availability and fluency through binary treatment of information and inconsequentiality of further knowledge. The results of their experiments did not support these claims. Newell & Fernandez and Richter & Späth tested the non-compensatory prediction of the recognition heuristic and stated that "recognition information is not used in an all-or-none fashion but is integrated with other types of knowledge in judgment and decision making." [23]
A reanalysis of these studies at an individual level, however, showed that typically about half of the participants consistently followed the recognition heuristic in every single trial, even in the presence of up to three contradicting cues. [24] Furthermore, in response to those criticisms, Marewski et al. [25] pointed out that none of the studies above formulated and tested a compensatory strategy against the recognition heuristic, leaving the strategies that participants relied on unknown. They tested five compensatory models and found that none could predict judgments better than the simple model of the recognition heuristic.
One major criticism of studies on the recognition heuristic that was raised was that mere accordance with the recognition heuristic is not a good measure of its use. As an alternative, Hilbig et al. proposed to test the recognition heuristic more precisely devised a multinomial processing tree model for the recognition heuristic. A multinomial processing tree model is a simple statistical model often used in cognitive psychology for categorical data. [26] Hilbig et al. claimed that a new model of recognition heuristic use was needed due to the confound between recognition and further knowledge. The multinomial processing tree model was shown to be effective and Hilbig et al. claimed that it provided an unbiased measure of the recognition heuristic. [27]
Pachur [28] stated that it is an imperfect model but currently it is still the best model to predict people’s recognition-based inferences. He believes that precise tests have a limited value basically because certain aspects of the recognition heuristic are often ignored and so the results could be inconsequential or misleading.
Hilbig et al. [27] state that heuristics are meant to reduce effort and that the recognition heuristic reduces effort in making judgments by relying on one single cue and ignoring other information. In their study, they found that the recognition heuristic is more useful in deliberate thought than in intuitive thought. This means it is more useful when thoughts are intentional and not impulsive as opposed to intuitive thought, which is based more on impulse rather than conscious reasoning. [29] In contrast, a study by Pachur and Hertwig [30] found that it is actually the faster responses that are more in line with the recognition heuristic. Also, judgments accorded more strongly with the recognition heuristic under time pressure. In line with these findings, neural evidence suggests that the recognition heuristic may be relied upon by default. [19]
Goldstein and Gigerenzer [31] state that due to its simplicity, the recognition heuristic shows to what degree and in what situations behavior can be predicted. Some researchers suggest that the idea of the recognition heuristic should be retired but Pachur believes that a different approach should be taken in testing it. There are some researchers who believe that the recognition heuristic should be investigated using precise tests of the exclusive use of recognition.
Another study by Pachur [14] suggested that the recognition heuristic is more likely a tool for exploring natural rather than induced recognition (i.e. not provoked in a laboratory setting) when inferences have to be made from memory. In one of his experiments, the results showed that there was a difference between participants in an experimental setting vs. a non-experimental setting.
Using an adversarial collaboration approach, three special issues of the open access journal Judgment and Decision Making have been devoted to unravel the support for and problems with the recognition heuristic, providing the most recent and comprehensive synopsis of the epistemic status quo. In their Editorial to Issue III, the three guest editors strive for a cumulative theory integration. [32]
A cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, may dictate their behavior in the world. Thus, cognitive biases may sometimes lead to perceptual distortion, inaccurate judgment, illogical interpretation, and irrationality.
A heuristic or heuristic technique is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision.
Heuristic reasoning is often based on induction, or on analogy ... Induction is the process of discovering general laws ... Induction tries to find regularity and coherence ... Its most conspicuous instruments are generalization, specialization, analogy. [...] Heuristic discusses human behavior in the face of problems [... that have been] preserved in the wisdom of proverbs.
The availability heuristic, also known as availability bias, is a mental shortcut that relies on immediate examples that come to a given person's mind when evaluating a specific topic, concept, method, or decision. This heuristic, operating on the notion that, if something can be recalled, it must be important, or at least more important than alternative solutions not as readily recalled, is inherently biased toward recently acquired information.
The conjunction fallacy is an inference that a conjoint set of two or more specific conclusions is likelier than any single member of that same set, in violation of the laws of probability. It is a type of formal fallacy.
Gerd Gigerenzer is a German psychologist who has studied the use of bounded rationality and heuristics in decision making. Gigerenzer is director emeritus of the Center for Adaptive Behavior and Cognition (ABC) at the Max Planck Institute for Human Development, Berlin, director of the Harding Center for Risk Literacy, University of Potsdam, and vice president of the European Research Council (ERC).
Daniel G. Goldstein is an American cognitive psychologist known for the specification and testing of heuristics and models of bounded rationality in the field of judgment and decision making. He is an honorary research fellow at London Business School and works with Microsoft Research as a principal researcher.
In psychology, the take-the-best heuristic is a heuristic which decides between two alternatives by choosing based on the first cue that discriminates them, where cues are ordered by cue validity. In the original formulation, the cues were assumed to have binary values or have an unknown value. The logic of the heuristic is that it bases its choice on the best cue (reason) only and ignores the rest.
The gaze heuristic falls under the category of tracking heuristics, and it is used in directing correct motion to achieve a goal using one main variable. McLeod & Dienes' (1996) example of the gaze heuristic is catching a ball.
In psychology, a fluency heuristic is a mental heuristic in which, if one object is processed more fluently, faster, or more smoothly than another, the mind infers that this object has the higher value with respect to the question being considered. In other words, the more skillfully or elegantly an idea is communicated, the more likely it is to be considered seriously, whether or not it is logical.
The "hot hand" is a phenomenon, previously considered a cognitive social bias, that a person who experiences a successful outcome has a greater chance of success in further attempts. The concept is often applied to sports and skill-based tasks in general and originates from basketball, where a shooter is more likely to score if their previous attempts were successful; i.e., while having the "hot hand.” While previous success at a task can indeed change the psychological attitude and subsequent success rate of a player, researchers for many years did not find evidence for a "hot hand" in practice, dismissing it as fallacious. However, later research questioned whether the belief is indeed a fallacy. Some recent studies using modern statistical analysis have observed evidence for the "hot hand" in some sporting activities; however, other recent studies have not observed evidence of the "hot hand". Moreover, evidence suggests that only a small subset of players may show a "hot hand" and, among those who do, the magnitude of the "hot hand" tends to be small.
Heuristics is the process by which humans use mental shortcuts to arrive at decisions. Heuristics are simple strategies that humans, animals, organizations, and even machines use to quickly form judgments, make decisions, and find solutions to complex problems. Often this involves focusing on the most relevant aspects of a problem or situation to formulate a solution. While heuristic processes are used to find the answers and solutions that are most likely to work or be correct, they are not always right or the most accurate. Judgments and decisions based on heuristics are simply good enough to satisfy a pressing need in situations of uncertainty, where information is incomplete. In that sense they can differ from answers given by logic and probability.
The heuristic-systematic model of information processing (HSM) is a widely recognized model by Shelly Chaiken that attempts to explain how people receive and process persuasive messages.
The rhyme-as-reason effect, also known as the Eaton–Rosen phenomenon, is a cognitive bias where sayings or aphorisms are perceived as more accurate or truthful when they rhyme.
Heuristics are simple strategies for decision making that are used to achieve a specific goal quickly and efficiently, and are commonly implemented in sports. Many sports require the ability to make fast decisions under time pressure, and the proper use of heuristics is essential for many of these decisions.
Social heuristics are simple decision making strategies that guide people's behavior and decisions in the social environment when time, information, or cognitive resources are scarce. Social environments tend to be characterised by complexity and uncertainty, and in order to simplify the decision-making process, people may use heuristics, which are decision making strategies that involve ignoring some information or relying on simple rules of thumb.
Ecological rationality is a particular account of practical rationality, which in turn specifies the norms of rational action – what one ought to do in order to act rationally. The presently dominant account of practical rationality in the social and behavioral sciences such as economics and psychology, rational choice theory, maintains that practical rationality consists in making decisions in accordance with some fixed rules, irrespective of context. Ecological rationality, in contrast, claims that the rationality of a decision depends on the circumstances in which it takes place, so as to achieve one's goals in this particular context. What is considered rational under the rational choice account thus might not always be considered rational under the ecological rationality account. Overall, rational choice theory puts a premium on internal logical consistency whereas ecological rationality targets external performance in the world. The term ecologically rational is only etymologically similar to the biological science of ecology.
In behavioural sciences, social rationality is a type of decision strategy used in social contexts, in which a set of simple rules is applied in complex and uncertain situations.
Fast-and-frugal treeormatching heuristic(in the study of decision-making) is a simple graphical structure that categorizes objects by asking one question at a time. These decision trees are used in a range of fields: psychology, artificial intelligence, and management science. Unlike other decision or classification trees, such as Leo Breiman's CART, fast-and-frugal trees are intentionally simple, both in their construction as well as their execution, and operate speedily with little information. For this reason, fast-and-frugal-trees are potentially attractive when designing resource-constrained tasks.
Intuitive statistics, or folk statistics, is the cognitive phenomenon where organisms use data to make generalizations and predictions about the world. This can be a small amount of sample data or training instances, which in turn contribute to inductive inferences about either population-level properties, future data, or both. Inferences can involve revising hypotheses, or beliefs, in light of probabilistic data that inform and motivate future predictions. The informal tendency for cognitive animals to intuitively generate statistical inferences, when formalized with certain axioms of probability theory, constitutes statistics as an academic discipline.
Ralph Hertwig is a German psychologist whose work focuses on the psychology of human judgment and decision making. Hertwig is Director of the Center for Adaptive Rationality at the Max Planck Institute for Human Development in Berlin, Germany. He grew up with his brothers Steffen Hertwig and Michael Hertwig in Talheim, Heilbronn.