Redundancy theory of truth

Last updated

According to the redundancy theory of truth (also known as the disquotational theory of truth), asserting that a statement is true is completely equivalent to asserting the statement itself. For example, asserting the sentence "'Snow is white' is true" is equivalent to asserting the sentence "Snow is white". The philosophical redundancy theory of truth is a deflationary theory of truth.

Contents

Overview

Redundancy theorists infer from this premise that truth is a redundant concept—in other words, that "truth" is merely a word that it is conventional to use in certain contexts but not one that points to anything in reality. The theory is commonly attributed to Frank P. Ramsey, who argued that the use of words like fact and truth was nothing but a roundabout way of asserting a proposition, and that treating these words as separate problems in isolation from judgment was merely a "linguistic muddle", though there remains some debate as to the correct interpretation of his position (Le Morvan 2004).

Redundancy theorists begin by inquiring into the function of the predicate "__is true" in sentences like "'Snow is white' is true". They reason that asserting the longer sentence is equivalent to asserting the shorter sentence "Snow is white". From this they infer that nothing is added to the assertion of the sentence "Snow is white" by quoting it, appending the predicate "__is true", and then asserting the result.

Most predicates attribute properties to their subjects, but the redundancy theory denies that the predicate is true does so. Instead, it treats the predicate is true as empty, adding nothing to an assertion except to convert its use to its mention. That is, the predicate "___is true" merely asserts the proposition contained in the sentential clause to which it is applied but does not ascribe any additional property to that proposition or sentence, and in Ramsey's British lexicon, "is true" is redundant. Hence, redundancy theory of truth claims that the whole issue of truth is an illusion, caused by our use of the predicate..."is true" which allegedly is redundant, i.e without meaning.[ citation needed ]

Precursors

Gottlob Frege was probably the first philosophical logician to express something very close to the idea that the predicate "is true" does not express anything above and beyond the statement to which it is attributed. In 1892, he wrote:

One can, indeed, say: "The thought that 5 is a prime number is true." But closer examination shows that nothing more has been said than in the simple sentence "5 is a prime number." The truth claim arises in each case from the form of the declarative sentence, and when the latter lacks its usual force, e.g., in the mouth of an actor upon the stage, even the sentence "The thought that 5 is a prime number is true" contains only a thought, and indeed the same thought as the simple "5 is a prime number." [1]

In 1918, he argued:

It is worthy of notice that the sentence "I smell the scent of violets" has the same content as the sentence "it is true that I smell the scent of violets". So it seems, then, that nothing is added to the thought by my ascribing to it the property of truth. [2] [3]

Ramsey's approach

Ramsey's paper "Facts and Propositions" (1927) is frequently cited as the precipitating contribution to the current of thought that came to be called the redundancy theory of truth. He wrote, "But before we proceed further with the analysis of judgment, it is necessary to say something about truth and falsehood, in order to show that there is really no separate problem of truth but merely a linguistic muddle" (p. 38).

Starting in a context of discussion that is concerned with analyzing judgment, in effect, the matter of asserting or denying propositions, Ramsey turns to the question of truth and falsehood, and suggests that these words add nothing of substance to the analysis of judgment already in progress:

Truth and falsity are ascribed primarily to propositions. The proposition to which they are ascribed may be either explicitly given or described.

Suppose first that it is explicitly given; then it is evident that 'It is true that Caesar was murdered' means no more than that Caesar was murdered, and 'It is false that Caesar was murdered' means that Caesar was not murdered.

In the course of his argument, Ramsey observes that there are many different ways of asserting what is really the same proposition, at least so far as the abstract logical meanings of sentences are concerned. In his first examples, he uses the verbal forms (1) 'It is true that ___' and (2) 'It is false that ___', for the sake of concreteness filling in the blanks with the sentential clause 'Caesar was murdered'. He says that assertions mediated by these forms are not distinct in meaning from the corresponding direct assertions.

They are phrases we sometimes use for emphasis or for stylistic reasons, or to indicate the position occupied by the statement in our argument.

So also we can say 'It is a fact that he was murdered' or 'That he was murdered is contrary to fact'.

In the same context and by the same token, Ramsey cites the verbal forms (3) 'It is a fact that ___' and (4) '___ is contrary to fact' as further examples of dispensable, otiose, redundant, or purely stylistic verbiage.

In the second case in which the proposition is described and not given explicitly we have perhaps more of a problem, for we get statements from which we cannot in ordinary language eliminate the words 'true' and 'false'.

The strategy of Ramsey's argument is to demonstrate that certain figures of speech—those in which truth and falsehood seem to figure as real properties of propositions, or as logical values that constitute real objects, however abstract, of discussion and thought—can always be eliminated in favor of paraphrases that do not reify truth and falsehood as nouns, or even use true and false as adjectives. The plausibility of this tactic is fairly evident in the case of verbal forms that introduce direct or indirect quotations, but its feasibility is less clear in the case of propositions whose contents are not given in full, but only by indirect or partial description.

Thus if I say 'He is always right', I mean that the propositions he asserts are always true, and there does not seem to be any way of expressing this without using the word 'true'.

But suppose we put it thus 'For all p, if he asserts p, p is true', then we see that the propositional function p is true is simply the same as p, as e.g. its value 'Caesar was murdered is true' is the same as 'Caesar was murdered'.

The type of propositional function that Ramsey is referring to here is a function that takes a proposition as input and gives a proposition as output. In this case, the propositional function of interest is one that takes any proposition p and returns a proposition of the form 'p is true'.

We have in English to add 'is true' to give the sentence a verb, forgetting that ' p ' already contains a (variable) verb.

This may be made clearer by supposing for a moment that only one form of proposition is in question, say the relational form aRb; then 'He is always right' could be expressed by 'For all a, R, b, if he asserts aRb, then aRb ', to which 'is true' would be an obviously superfluous addition.

When all forms of proposition are included the analysis is more complicated but not essentially different; and it is clear that the problem is not as to the nature of truth and falsehood, but as to the nature of judgment or assertion, for what is difficult to analyse in the above formulation is 'He asserts aRb '.

It is, perhaps, also immediately obvious that if we have analysed judgment we have solved the problem of truth; for taking the mental factor in a judgment (which is often itself called a judgment), the truth or falsity of this depends only on what proposition it is that is judged, and what we have to explain is the meaning of saying that the judgment is a judgment that a has R to b, i.e. is true if aRb, false if not. We can, if we like, say that it is true if there exists a corresponding fact that a has R to b, but this is essentially not an analysis but a periphrasis, for 'The fact that a has R to b exists' is no different from ' a has R to b '.

Variants

A variant of redundancy theory is the disquotational theory, which uses a modified form of Tarski's T-schema: To say that "'P' is true" is to say that P. Yet another version of deflationism is the prosentential theory of truth, first developed by Dorothy Grover, Joseph Camp, and Nuel Belnap as an elaboration of Ramsey's claims. They argue that sentences like "That's true", when said in response to "It's raining", are prosentences (see pro-form), expressions that merely repeat the content of other expressions. In the same way that it means the same as my dog in the sentence My dog was hungry, so I fed it, That's true is supposed to mean the same as It's raining—if you say the latter and I then say the former. These variations do not necessarily follow Ramsey in asserting that truth is not a property, but rather can be understood to say that, for instance, the assertion "P" may well involve a substantial truth, and the theorists in this case are minimalizing only the redundancy or prosentence involved in the statement such as "that's true." [4]

Proponents of pragmatic, constructivist and consensus theories would differ with all these conclusions, however, and instead assert that the second person making the statement "that's true" is actually participating in further verifying, constructing and/or achieving consensus on the proposed truth of the matter—e.g., the proposition that "it's raining".

Redundancy theory does not apply to representations that are not analogous to sentences and they do not apply to many other things that are commonly judged to be true or otherwise. Consider the analogy between the sentence "Snow is white" and the person Snow White, both of which can be true in a sense. To say "'Snow is white' is true" is to say "Snow is white", but to say "Snow White is true" is, obviously, not to say "Snow White."

See also

Notes

  1. Frege, G., 1892. "On Sense and Reference", Black, 1948
  2. Frege, G., 1918. "The Thought", in his Logical Investigations, Oxford: Blackwell, 1977
  3. Truth – Internet Encyclopedia of Philosophy; The Deflationary Theory of Truth (Stanford Encyclopedia of Philosophy).
  4. Encyclopedia of Philosophy, Supp., "Truth", auth:Michael Williams, p572-573 (Macmillan, 1996)

Related Research Articles

In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principleof the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.

In metaphilosophy and ethics, metaethics is the study of the nature, scope, and meaning of moral judgment. It is one of the three branches of ethics generally studied by philosophers, the others being normative ethics and applied ethics.

Truth or verity is the property of being in accord with fact or reality. In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs, propositions, and declarative sentences.

A proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as being the kind of thing that declarative sentences denote. For instance the sentence "The sky is blue" denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions. For instance, the English sentence "Snow is white" denotes the same proposition as the German sentence "Schnee ist weiß" even though the two sentences are not the same. Similarly, propositions can also be characterized as the objects of belief and other propositional attitudes. For instance if one believes that the sky is blue, what one believes is the proposition that the sky is blue. A proposition can also be thought of as a kind of idea: Collins Dictionary has a definition for proposition as "a statement or an idea that people can consider or discuss whether it is true."

Cognitivism is the meta-ethical view that ethical sentences express propositions and can therefore be true or false, which noncognitivists deny. Cognitivism is so broad a thesis that it encompasses moral realism, ethical subjectivism, and error theory.

In philosophy, the unity of the proposition is the problem of explaining how a sentence in the indicative mood expresses more than just what a list of proper names expresses.

In the philosophy of mathematics, logicism is a programme comprising one or more of the theses that – for some coherent meaning of 'logic' – mathematics is an extension of logic, some or all of mathematics is reducible to logic, or some or all of mathematics may be modelled in logic. Bertrand Russell and Alfred North Whitehead championed this programme, initiated by Gottlob Frege and subsequently developed by Richard Dedekind and Giuseppe Peano.

Ethical subjectivism is the meta-ethical view which claims that:

  1. Ethical sentences express propositions.
  2. Some such propositions are true.
  3. The truth or falsity of such propositions is ineliminably dependent on the attitudes of people.

Bertrand Russell makes a distinction between two different kinds of knowledge: knowledge by acquaintance and knowledge by description. Whereas knowledge by description is something like ordinary propositional knowledge, knowledge by acquaintance is familiarity with a person, place, or thing, typically obtained through perceptual experience. According to Bertrand Russell's classic account of acquaintance knowledge, acquaintance is a direct causal interaction between a person and some object that the person is perceiving.

In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition can be inferred; this is known as deductive explosion.

In philosophy and logic, a deflationary theory of truth is one of a family of theories that all have in common the claim that assertions of predicate truth of a statement do not attribute a property called "truth" to such a statement.

The theory of descriptions is the philosopher Bertrand Russell's most significant contribution to the philosophy of language. It is also known as Russell's theory of descriptions. In short, Russell argued that the syntactic form of descriptions is misleading, as it does not correlate their logical and/or semantic architecture. While descriptions may seem like fairly uncontroversial phrases, Russell argued that providing a satisfactory analysis of the linguistic and logical properties of a description is vital to clarity in important philosophical debates, particularly in semantic arguments, epistemology and metaphysical elements.

The T-schema is used to check if an inductive definition of truth is valid, which lies at the heart of any realisation of Alfred Tarski's semantic theory of truth. Some authors refer to it as the "Equivalence Schema", a synonym introduced by Michael Dummett.

The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.

In meta-ethics, expressivism is a theory about the meaning of moral language. According to expressivism, sentences that employ moral terms – for example, "It is wrong to torture an innocent human being" – are not descriptive or fact-stating; moral terms such as "wrong", "good", or "just" do not refer to real, in-the-world properties. The primary function of moral sentences, according to expressivism, is not to assert any matter of fact but rather to express an evaluative attitude toward an object of evaluation. Because the function of moral language is non-descriptive, moral sentences do not have any truth conditions. Hence, expressivists either do not allow that moral sentences to have truth value, or rely on a notion of truth that does not appeal to any descriptive truth conditions being met for moral sentences.

<i>Language, Truth, and Logic</i> 1936 book by A. J. Ayer

Language, Truth and Logic is a 1936 book about meaning by the philosopher Alfred Jules Ayer, in which the author defines, explains, and argues for the verification principle of logical positivism, sometimes referred to as the criterion of significance or criterion of meaning. Ayer explains how the principle of verifiability may be applied to the problems of philosophy. Language, Truth and Logic brought some of the ideas of the Vienna Circle and the logical empiricists to the attention of the English-speaking world.

In philosophy—more specifically, in its sub-fields semantics, semiotics, philosophy of language, metaphysics, and metasemantics—meaning "is a relationship between two sorts of things: signs and the kinds of things they intend, express, or signify".

A truth-bearer is an entity that is said to be either true or false and nothing else. The thesis that some things are true while others are false has led to different theories about the nature of these entities. Since there is divergence of opinion on the matter, the term truth-bearer is used to be neutral among the various theories. Truth-bearer candidates include propositions, sentences, sentence-tokens, statements, beliefs, thoughts, intuitions, utterances, and judgements but different authors exclude one or more of these, deny their existence, argue that they are true only in a derivative sense, assert or assume that the terms are synonymous, or seek to avoid addressing their distinction or do not clarify it.

The analytic–synthetic distinction is a semantic distinction used primarily in philosophy to distinguish between propositions that are of two types: analytic propositions and synthetic propositions. Analytic propositions are true or not true solely by virtue of their meaning, whereas synthetic propositions' truth, if any, derives from how their meaning relates to the world.

Ideal observer theory is the meta-ethical view which claims that ethical sentences express truth-apt propositions about the attitudes of a hypothetical ideal observer. In other words, ideal observer theory states that ethical judgments should be interpreted as statements about the reactions that a neutral and fully informed observer would have; "x is good" means "an ideal observer would approve of x".

The main idea [of the ideal observer theory] is that ethical terms should be defined after the pattern of the following example: "x is better than y" means "If anyone were, in respect of x and y, fully informed and vividly imaginative, impartial, in a calm frame of mind and otherwise normal, he would prefer x to y."

References