Regular ideal

Last updated

In mathematics, especially ring theory, a regular ideal can refer to multiple concepts.

Contents

In operator theory, a right ideal in a (possibly) non-unital ring A is said to be regular (or modular) if there exists an element e in A such that for every . [1]

In commutative algebra a regular ideal refers to an ideal containing a non-zero divisor. [2] [3] This article will use "regular element ideal" to help distinguish this type of ideal.

A two-sided ideal of a ring R can also be called a (von Neumann) regular ideal if for each element x of there exists a y in such that xyx=x. [4] [5]

Finally, regular ideal has been used to refer to an ideal J of a ring R such that the quotient ring R/J is von Neumann regular ring. [6] This article will use "quotient von Neumann regular" to refer to this type of regular ideal.

Since the adjective regular has been overloaded, this article adopts the alternative adjectives modular, regular element, von Neumann regular, and quotient von Neumann regular to distinguish between concepts.

Properties and examples

Modular ideals

The notion of modular ideals permits the generalization of various characterizations of ideals in a unital ring to non-unital settings.

A two-sided ideal is modular if and only if is unital. In a unital ring, every ideal is modular since choosing e=1 works for any right ideal. So, the notion is more interesting for non-unital rings such as Banach algebras. From the definition it is easy to see that an ideal containing a modular ideal is itself modular.

Somewhat surprisingly, it is possible to prove that even in rings without identity, a modular right ideal is contained in a maximal right ideal. [7] However, it is possible for a ring without identity to lack modular right ideals entirely.

The intersection of all maximal right ideals which are modular is the Jacobson radical. [8]

Examples

Regular element ideals

Every ring with unity has at least one regular element ideal: the trivial ideal R itself. Regular element ideals of commutative rings are essential ideals. In a semiprime right Goldie ring, the converse holds: essential ideals are all regular element ideals. [9]

Since the product of two regular elements (=non-zerodivisors) of a commutative ring R is again a regular element, it is apparent that the product of two regular element ideals is again a regular element ideal. Clearly any ideal containing a regular element ideal is again a regular element ideal.

Examples

Von Neumann regular ideals

From the definition, it is clear that R is a von Neumann regular ring if and only if R is a von Neumann regular ideal. The following statement is a relevant lemma for von Neumann regular ideals:

Lemma: For a ring R and proper ideal J containing an element a, there exists and element y in J such that a=aya if and only if there exists an element r in R such that a=ara. Proof: The "only if" direction is a tautology. For the "if" direction, we have a=ara=arara. Since a is in J, so is rar, and so by setting y=rar we have the conclusion.

As a consequence of this lemma, it is apparent that every ideal of a von Neumann regular ring is a von Neumann regular ideal. Another consequence is that if J and K are two ideals of R such that JK and K is a von Neumann regular ideal, then J is also a von Neumann regular ideal.

If J and K are two ideals of R, then K is von Neumann regular if and only if both J is a von Neumann regular ideal and K/J is a von Neumann regular ring. [10]

Every ring has at least one von Neumann regular ideal, namely {0}. Furthermore, every ring has a maximal von Neumann regular ideal containing all other von Neumann regular ideals, and this ideal is given by

.
Examples

Quotient von Neumann regular ideals

If J and K are quotient von Neumann regular ideals, then so is JK.

If JK are proper ideals of R and J is quotient von Neumann regular, then so is K. This is because quotients of R/J are all von Neumann regular rings, and an isomorphism theorem for rings establishing that R/K≅(R/J)/(J/K). In particular if A is any ideal in R the ideal A+J is quotient von Neumann regular if J is.

Examples

Related Research Articles

<span class="mw-page-title-main">Prime ideal</span> Ideal in a ring which has properties similar to prime elements

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

<span class="mw-page-title-main">Ideal (ring theory)</span> Additive subgroup of a mathematical ring that absorbs multiplication

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

In mathematics, specifically in ring theory, the simple modules over a ring R are the modules over R that are non-zero and have no non-zero proper submodules. Equivalently, a module M is simple if and only if every cyclic submodule generated by a non-zero element of M equals M. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, more specifically ring theory, the Jacobson radical of a ring is the ideal consisting of those elements in that annihilate all simple right -modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by or ; the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in.

In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring.

In ring theory, a branch of mathematics, a ring is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.

In mathematics, a von Neumann regular ring is a ring R such that for every element a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of the element a; in general x is not uniquely determined by a. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left R-module is flat.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

<span class="mw-page-title-main">Total ring of fractions</span>

In abstract algebra, the total quotient ring, or total ring of fractions, is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.

In mathematics, a principal right (left) ideal ring is a ring R in which every right (left) ideal is of the form xR (Rx) for some element x of R. When this is satisfied for both left and right ideals, such as the case when R is a commutative ring, R can be called a principal ideal ring, or simply principal ring.

In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes.

In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A which is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed: fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed.

This is a glossary of commutative algebra.

References

  1. Jacobson 1956.
  2. Non-zero-divisors in commutative rings are called regular elements.
  3. Larsen & McCarthy 1971, p. 42.
  4. Goodearl 1991, p. 2.
  5. Kaplansky 1969, p. 112.
  6. Burton, D.M. (1970) A first course in rings and ideals. Addison-Wesley. Reading, Massachusetts .
  7. Jacobson 1956, p. 6.
  8. Kaplansky 1948, Lemma 1.
  9. Lam 1999, p. 342.
  10. Goodearl 1991, p.2.

Bibliography