Regulatory enzyme

Last updated

A regulatory enzyme is an enzyme in a biochemical pathway which, through its responses to the presence of certain other biomolecules, regulates the pathway activity. This is usually done for pathways whose products may be needed in different amounts at different times, such as hormone production. Regulatory enzymes exist at high concentrations (low Vmax) so their activity can be increased or decreased with changes in substrate concentrations

Contents


The enzymes which catalyse chemical reactions again and again are called regulatory enzymes.

Overview

Generally, it is considered that a hyperbolic structured protein in specific media conditions is ready to do its task, it is active, but some specific deactivation, are responsible for the regulation of some metabolism pathways. Regulatory enzymes are commonly the first enzyme in a multienzyme system: the product of the reaction catalyzed by the first enzyme is the substrate of the second enzyme, so the cell can control the amount of resulting product by regulating the activity of the first enzyme of the pathway.

There are many strategies of activation and deactivation of regulatory enzymes. Regulatory enzymes require an extra activation process and need to pass through some modifications in their 3D in order to become functional, for instance, catalyzing enzymes (regulatory enzymes). The regulation of the activation of these catalyzing enzymes is needed in order to regulate the whole reaction speed, so that it is possible to obtain the amount of product required at any time, that makes regulatory enzymes have a biological importance. Therefore, regulatory enzymes, by its controlled activation and are of two types: allosteric enzymes and covalently modulated enzymes; however, an enzyme can combine both types of regulation.

Allosteric enzymes

In a) the allosteric enzyme functions normally. In b), it is inhibited Allosteric comp inhib 1.svg
In a) the allosteric enzyme functions normally. In b), it is inhibited

This type of enzymes presents two binding sites: the substrate of the enzyme and the effectors. Effectors are small molecules which modulate the enzyme activity; they function through reversible, non-covalent binding of a regulatory metabolite in the allosteric site (which is not the active site). When bound, these metabolites do not participate in catalysis directly, but they are still essential: they lead to conformational changes in a concrete part of the enzyme. These changes affect the overall conformation of the active site, causing modifications on the activity of the reaction. [1]

Properties

Allosteric enzymes are generally larger in mass than other enzymes. Different from having a single subunit enzyme, in this case they are composed of multiple subunits, which contain active sites and regulatory molecule binding sites.

They present a special kinetics: the cooperation. In here, configuration changes in each chain of the protein strengthen changes in the other chains. These changes occur at the tertiary and quaternary levels of organisation.

Based on modulation, they can be classified in two different groups:

Feedback inhibition

In some multienzyme systems, the enzyme is inhibited by the end product whenever its concentration is above the requirements of the cell. So, the velocity of the reaction can be controlled by the amount of product that is needed by the cell (the lower the requirement is, the slower the reaction goes).

Feedback inhibition is one of the most important function of proteins. Due to feedback inhibition, a cell is able to know whether the amount of a product is enough for its subsistence or there is a lack of the product (or there is too much product). The cell is able to react to this kind of situation in a mechanical way and solve the problem of the amount of a product. An example of feedback inhibition in human cells is the protein aconitase (an enzyme that catalyses the isomeration of citrate to isocitrate). When the cell needs iron, this enzyme loses the iron molecule and its form changes. When this happens, the aconitase is converted to IRPF1, a translation repressor or mRNA stabilizer that represses the formation of iron-binding proteins and favours formation of proteins that can get iron from the cell's reservations [1] [2]

Covalently modulated enzymes

Here, the active and inactive form of the enzymes are altered due to covalent modification of their structures which is catalysed by other enzymes. This type of regulation consists of the addition or elimination of some molecules which can be attached to the enzyme protein. The most important groups that work as modifiers are phosphate, methyl, uridine, adenine and adenosine diphosphate ribosyl. These groups are joined to or eliminated from the protein by other enzymes. The most remarkable covalent modification is phosphorylation. Serine, Threonine and Tyrosine are common amino acids that participate in covalent modifications and are used to control enzyme’s catalytic activities. Kinase and phosphatases are commonly known enzymes that affect these modifications, which result in shifting of conformational states of the binding affinity to substrate.

Phosphorylation

Phosphorylation of an enzyme Phosphorylase and PP1 Diagram.png
Phosphorylation of an enzyme

Phosphorylation is the addition of phosphate groups to proteins, which is the most frequent regulatory modification mechanism in our cells. This process takes place in prokaryotic and eukaryotic cells (in this type of cells, a third or a half of the proteins experience phosphorylation). Because of its frequency, phosphorylation has a lot of importance in regulatory pathways in cells.

The addition of a phosphoryl group to an enzyme is catalysed by kinase enzymes, while the elimination of this group is catalysed by phosphatase enzymes. The frequency of phosphorylation as a regulatory mechanism is due to the ease of changing from phosphorylated form to dephosphorylated form.

Phosphorylation or dephosphorylation make the enzyme be functional at the time when the cell needs the reaction to happen. The effects produced by the addition of phosphoryl groups that regulate the kinetics of a reaction can be divided in two groups:

Phosphorylation and dephosphorylation may take place as a result of the response to signals that warn about a change in the cell state. This means that some pathways where regulatory enzymes participate are regulated by phosphorylation after a specific signal: a change in the cell.

Some enzymes can be phosphorylated in multiple sites. The presence of a phosphoryl group in a part of a protein may depend on the folding of the enzyme (which can make the protein more or less accessible to kinase proteins) and the proximity of other phosphoryl groups. [1] [3] [4]

Proteolysis

Chymotrypsinogen (the precursor of Chymotrypsin). Painted in red the residue ILE16 and in green the residue ARG15 both involved in the enzyme activation. In dark blue the residue ASP 194 that will later interact with ILE 16. Chymotrypsinogen.jpg
Chymotrypsinogen (the precursor of Chymotrypsin). Painted in red the residue ILE16 and in green the residue ARG15 both involved in the enzyme activation. In dark blue the residue ASP 194 that will later interact with ILE 16.
Gamma-Chymotrypsin. In red the residue ILE16 that is now interacting with ASP194, in dark blue. First step of the enzyme activation: the peptide bond ARG15-ILE16 has been hydrolyzed releasing the ILE16 amine, positively charged in physiologic conditions. The amine will strongly interact with the negatively charged radical from ASP194, an ionic bond will be established. Chymotrypsin (reverse).jpg
Gamma-Chymotrypsin. In red the residue ILE16 that is now interacting with ASP194, in dark blue. First step of the enzyme activation: the peptide bond ARG15-ILE16 has been hydrolyzed releasing the ILE16 amine, positively charged in physiologic conditions. The amine will strongly interact with the negatively charged radical from ASP194, an ionic bond will be established.
Gamma-Chymotrypsin, a complex of Alpha-Chymotrypsin. Images modified from pdb Chymotrypsin activated.jpg
Gamma-Chymotrypsin, a complex of Alpha-Chymotrypsin. Images modified from pdb

Some enzymes need to go through a maturation process to be activated. A precursor (inactive state, better known as zymogen) is first synthesized, and then, by cutting some specific peptide bonds (enzymatic catalysis by hydrolytic selective split), its 3D conformation is highly modified into a catalytic functional status, obtaining the active enzyme.

Proteolysis is irreversible and normally a non-specific process. The same activator can modulate different regulatory enzymes : once trypsin is activated, it activates many other hydrolytic enzymes. Proteolysis can also be fast and simple so the hydrolysis of a single peptide bond can be enough to change the conformation of the protein and build an active zone, allowing the interaction between the enzyme and the substrate, for instance, chymotrypsin activation (as it can be seen in the images).

Many different types of proteins with different roles in metabolism are activated by proteolysis for big reasons:

Proteolysis is irreversible, which implies the need of a process of enzyme deactivation. Specific inhibitors, analogous to the substrate, will strongly join the enzyme, blocking the substrate to join the enzyme. This union may last for months. [1] [5]

Related Research Articles

<span class="mw-page-title-main">Enzyme</span> Large biological molecule that acts as a catalyst

Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. As a result, kinase produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Phosphorylation</span> Chemical process of introducing a phosphate

In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.

<span class="mw-page-title-main">Allosteric regulation</span> Regulation of enzyme activity

In biochemistry, allosteric regulation is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site.

<span class="mw-page-title-main">Active site</span> Active region of an enzyme

In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, it is the most important part as it directly catalyzes the chemical reaction. It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzymes.

<span class="mw-page-title-main">Protein kinase A</span> Family of enzymes

In cell biology, protein kinase A (PKA) is a family of serine-threonine kinase whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.

<span class="mw-page-title-main">Phosphofructokinase 1</span> Class of enzymes

Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ADP. Glycolysis is the foundation for respiration, both anaerobic and aerobic. Because phosphofructokinase (PFK) catalyzes the ATP-dependent phosphorylation to convert fructose-6-phosphate into fructose 1,6-bisphosphate and ADP, it is one of the key regulatory steps of glycolysis. PFK is able to regulate glycolysis through allosteric inhibition, and in this way, the cell can increase or decrease the rate of glycolysis in response to the cell's energy requirements. For example, a high ratio of ATP to ADP will inhibit PFK and glycolysis. The key difference between the regulation of PFK in eukaryotes and prokaryotes is that in eukaryotes PFK is activated by fructose 2,6-bisphosphate. The purpose of fructose 2,6-bisphosphate is to supersede ATP inhibition, thus allowing eukaryotes to have greater sensitivity to regulation by hormones like glucagon and insulin.

<span class="mw-page-title-main">Pyruvate kinase</span> Class of enzymes

Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruvate kinase was inappropriately named before it was recognized that it did not directly catalyze phosphorylation of pyruvate, which does not occur under physiological conditions. Pyruvate kinase is present in four distinct, tissue-specific isozymes in animals, each consisting of particular kinetic properties necessary to accommodate the variations in metabolic requirements of diverse tissues.

<span class="mw-page-title-main">Binding site</span> Molecule-specific coordinate bonding area in biological systems

In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may include other proteins, enzyme substrates, second messengers, hormones, or allosteric modulators. The binding event is often, but not always, accompanied by a conformational change that alters the protein's function. Binding to protein binding sites is most often reversible, but can also be covalent reversible or irreversible.

<span class="mw-page-title-main">Phosphatase</span> Enzyme which catalyzes the removal of a phosphate group from a molecule

In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol. Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. Phosphatase enzymes are essential to many biological functions, because phosphorylation and dephosphorylation serve diverse roles in cellular regulation and signaling. Whereas phosphatases remove phosphate groups from molecules, kinases catalyze the transfer of phosphate groups to molecules from ATP. Together, kinases and phosphatases direct a form of post-translational modification that is essential to the cell's regulatory network.

<span class="mw-page-title-main">Glucose 6-phosphate</span> Chemical compound

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

<span class="mw-page-title-main">Adenylate kinase</span> Class of enzymes

Adenylate kinase is a phosphotransferase enzyme that catalyzes the interconversion of the various adenosine phosphates. By constantly monitoring phosphate nucleotide levels inside the cell, ADK plays an important role in cellular energy homeostasis.

<span class="mw-page-title-main">Enzyme inhibitor</span> Molecule that blocks enzyme activity

An enzyme inhibitor is a molecule that binds to an enzyme and blocks its activity. Enzymes are proteins that speed up chemical reactions necessary for life, in which substrate molecules are converted into products. An enzyme facilitates a specific chemical reaction by binding the substrate to its active site, a specialized area on the enzyme that accelerates the most difficult step of the reaction.

<span class="mw-page-title-main">Phosphoglycerate kinase</span> Enzyme

Phosphoglycerate kinase is an enzyme that catalyzes the reversible transfer of a phosphate group from 1,3-bisphosphoglycerate (1,3-BPG) to ADP producing 3-phosphoglycerate (3-PG) and ATP :

Chemical modification refers to a number of various processes involving the alteration of the chemical constitution or structure of molecules.

<span class="mw-page-title-main">Enzyme catalysis</span> Catalysis of chemical reactions by enzymes

Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

<span class="mw-page-title-main">Ubiquitin-activating enzyme</span> Class of enzymes

Ubiquitin-activating enzymes, also known as E1 enzymes, catalyze the first step in the ubiquitination reaction, which can target a protein for degradation via a proteasome. This covalent bond of ubiquitin or ubiquitin-like proteins to targeted proteins is a major mechanism for regulating protein function in eukaryotic organisms. Many processes such as cell division, immune responses and embryonic development are also regulated by post-translational modification by ubiquitin and ubiquitin-like proteins.

<span class="mw-page-title-main">Fructose 2,6-bisphosphate</span> Chemical compound

Fructose 2,6-bisphosphate, abbreviated Fru-2,6-P2, is a metabolite that allosterically affects the activity of the enzymes phosphofructokinase 1 (PFK-1) and fructose 1,6-bisphosphatase (FBPase-1) to regulate glycolysis and gluconeogenesis. Fru-2,6-P2 itself is synthesized and broken down in either direction by the integrated bifunctional enzyme phosphofructokinase 2 (PFK-2/FBPase-2), which also contains a phosphatase domain and is also known as fructose-2,6-bisphosphatase. Whether the kinase and phosphatase domains of PFK-2/FBPase-2 are active or inactive depends on the phosphorylation state of the enzyme.

<span class="mw-page-title-main">Phosphofructokinase</span> Enzyme in glycolysis

Phosphofructokinase (PFK) is a kinase enzyme that phosphorylates fructose 6-phosphate in glycolysis.

References

  1. 1 2 3 4 Nelson, DL; Cox, MM (2009). Lehninger: Principios de bioquímica (5th ed.). Barcelona: Omega. pp. 220–228. ISBN   978-84-282-1486-5.
  2. Copley, SD (July 2012). "Moonlighting is Mainstream: Paradigm Adjustment Required". BioEssays. 34 (7): 578–588. doi:10.1002/bies.201100191. PMID   22696112.
  3. Alberts, B; Johnson, A (2008). Molecular Biology of the Cell (5th ed.). New York: Garland Science (GS). pp. 175–176. ISBN   978-0-8153-4106-2.
  4. Murray, RK; Bender, DA; Botham, KM; Kennely, PJ; Rodwell, VW; Weil, PA (2010). Harper. Bioquímica ilustrada (28th ed.). Mexico DF: Mc Graw Hill. pp. 80–81. ISBN   978-0-07-162591-3.
  5. Stryer, L; Berg, JM; Tymoczko, JL (2012). Biochemistry (Seventh ed.). New York: Palgrave, Macmillan. pp. 312–324. ISBN   978-1-4292-7635-1.