Relative canonical model

Last updated

In the mathematical field of algebraic geometry, the relative canonical model of a singular variety of a mathematical object where is a particular canonical variety that maps to , which simplifies the structure.

Description

The precise definition is:

If is a resolution define the adjunction sequence to be the sequence of subsheaves if is invertible where is the higher adjunction ideal. Problem. Is finitely generated? If this is true then is called the relative canonical model of , or the canonical blow-up of . [1]

Some basic properties were as follows: The relative canonical model was independent of the choice of resolution. Some integer multiple of the canonical divisor of the relative canonical model was Cartier and the number of exceptional components where this agrees with the same multiple of the canonical divisor of Y is also independent of the choice of Y. When it equals the number of components of Y it was called crepant . [1] It was not known whether relative canonical models were Cohen–Macaulay.

Because the relative canonical model is independent of , most authors simplify the terminology, referring to it as the relative canonical model of rather than either the relative canonical model of or the canonical blow-up of . The class of varieties that are relative canonical models have canonical singularities. Since that time in the 1970s other mathematicians solved affirmatively the problem of whether they are Cohen–Macaulay. The minimal model program started by Shigefumi Mori proved that the sheaf in the definition always is finitely generated and therefore that relative canonical models always exist.

Related Research Articles

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

In algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.

In mathematics, homological conjectures have been a focus of research activity in commutative algebra since the early 1960s. They concern a number of interrelated conjectures relating various homological properties of a commutative ring to its internal ring structure, particularly its Krull dimension and depth.

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle Ω on V.

Linear system of divisors

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are ultimately derived from the notion of divisibility in the integers and algebraic number fields.

In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

In algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors, there is an equivalent notion of a nef divisor.

In algebraic geometry, flips and flops are codimension-2 surgery operations arising in the minimal model program, given by blowing up along a relative canonical ring. In dimension 3 flips are used to construct minimal models, and any two birationally equivalent minimal models are connected by a sequence of flops. It is conjectured that the same is true in higher dimensions.

In mathematics the cotangent complex is roughly a universal linearization of a morphism of geometric or algebraic objects. Cotangent complexes were originally defined in special cases by a number of authors. Luc Illusie, Daniel Quillen, and M. André independently came up with a definition that works in all cases.

In mathematics, canonical singularities appear as singularities of the canonical model of a projective variety, and terminal singularities are special cases that appear as singularities of minimal models. They were introduced by Reid (1980). Terminal singularities are important in the minimal model program because smooth minimal models do not always exist, and thus one must allow certain singularities, namely the terminal singularities.

This is a glossary of algebraic geometry.

In algebraic geometry, the dualizing sheaf on a proper scheme X of dimension n over a field k is a coherent sheaf together with a linear functional

In algebraic geometry, a Gorenstein scheme is a locally Noetherian scheme whose local rings are all Gorenstein. The canonical line bundle is defined for any Gorenstein scheme over a field, and its properties are much the same as in the special case of smooth schemes.

In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

References

  1. 1 2 M. Reid, Canonical 3-folds (courtesy copy), proceedings of the Angiers 'Journees de Geometrie Algebrique' 1979