Relativistic rocket

Last updated

Relativistic rocket means any spacecraft that travels close enough to light speed for relativistic effects to become significant. The meaning of "significant" is a matter of context, but often a threshold velocity of 30% to 50% of the speed of light (0.3c to 0.5c) is used. At 30% c, the difference between relativistic mass and rest mass is only about 5%, while at 50% it is 15%, (at 0.75c the difference is over 50%); so above such speeds special relativity is needed to accurately describe motion, while below this range Newtonian physics and the Tsiolkovsky rocket equation usually give sufficient accuracy.

Contents

In this context, a rocket is defined as an object carrying all of its reaction mass, energy, and engines with it.

No known technology can bring a rocket to relativistic speed. Relativistic rockets require huge advances in spacecraft propulsion, energy storage, and engine efficiency which may or may not ever be possible. Nuclear pulse propulsion could theoretically reach 0.1c using current known technology, but would still require many engineering advances to achieve this. The relativistic gamma factor at 10% of light velocity is 1.005. A 0.1c speed rocket is thus considered non-relativistic since its motion is still quite accurately described by Newtonian physics alone.

Relativistic rockets are usually seen discussed in the context of interstellar travel, since most would need a lot of space to reach such speed. They are also found in some thought experiments such as the twin paradox.

Relativistic rocket equation

As with the classical rocket equation, one wants to calculate the velocity change that a rocket can achieve depending on the exhaust speed and the mass ratio, i. e. the ratio of starting rest mass and rest mass at the end of the acceleration phase (dry mass) .

In order to make calculations simpler, we assume that the acceleration is constant (in the rocket's reference frame) during the acceleration phase; still, the result is nonetheless valid if the acceleration varies, as long as exhaust velocity is constant.

In the nonrelativistic case, one knows from the (classical) Tsiolkovsky rocket equation that

Assuming constant acceleration , the time span during which the acceleration takes place is

In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives

where "exp" is the exponential function. Another related equation [1] gives the mass ratio in terms of the end velocity relative to the rest frame (i. e. the frame of the rocket before the acceleration phase):

For constant acceleration, (with a and t again measured on board the rocket), [2] so substituting this equation into the previous one and using the hyperbolic function identity returns the earlier equation .

By applying the Lorentz transformation, one can calculate the end velocity as a function of the rocket frame acceleration and the rest frame time ; the result is

The time in the rest frame relates to the proper time by the hyperbolic motion equation:

Substituting the proper time from the Tsiolkovsky equation and substituting the resulting rest frame time in the expression for , one gets the desired formula:

The formula for the corresponding rapidity (the inverse hyperbolic tangent of the velocity divided by the speed of light) is simpler:

Since rapidities, contrary to velocities, are additive, they are useful for computing the total of a multistage rocket.

Matter-antimatter annihilation rockets

It is clear from the above calculations that a relativistic rocket would likely need to be antimatter-fired.[ original research? ] Other antimatter rockets in addition to the photon rocket that can provide a 0.6c specific impulse (studied for basic hydrogen-antihydrogen annihilation, no ionization, no recycling of the radiation [3] ) needed for interstellar flight include the "beam core" pion rocket. In a pion rocket, frozen antihydrogen is stored inside electromagnetic bottles. Antihydrogen, like regular hydrogen, is diamagnetic which allows it to be electromagnetically levitated when refrigerated. Temperature control of the storage volume is used to determine the rate of vaporization of the frozen antihydrogen, up to a few grams per second (hence several petawatts when annihilated with equal amounts of matter). It is then ionized into antiprotons which can be electromagnetically accelerated into the reaction chamber. The positrons are usually discarded since their annihilation only produces harmful gamma rays with negligible effect on thrust. However, non-relativistic rockets may exclusively rely on these gamma rays for propulsion. [4] This process is necessary because un-neutralized antiprotons repel one another, limiting the number that may be stored with current technology to less than a trillion. [5]

Design notes on a pion rocket

The pion rocket has been studied independently by Robert Frisbee [6] and Ulrich Walter, with similar results. Pions, short for pi-mesons, are produced by proton-antiproton annihilation. The antihydrogen or the antiprotons extracted from it will be mixed with a mass of regular protons pumped into the magnetic confinement nozzle of a pion rocket engine, usually as part of hydrogen atoms. The resulting charged pions have a speed of 0.94c (i.e. = 0.94), and a Lorentz factor of 2.93 which extends their lifespan enough to travel 21 meters through the nozzle before decaying into muons. 60% of the pions will have either a negative, or a positive electric charge. 40% of the pions will be neutral. The neutral pions decay immediately into gamma rays. These can't be reflected by any known material at the energies involved, though they can undergo Compton scattering. They can be absorbed efficiently by a shield of tungsten placed between the pion rocket engine reaction volume and the crew modules and various electromagnets to protect them from the gamma rays. The consequent heating of the shield will make it radiate visible light, which could then be collimated to increase the rocket's specific impulse. [3] The remaining heat will also require the shield to be refrigerated. [6] The charged pions would travel in helical spirals around the axial electromagnetic field lines inside the nozzle and in this way the charged pions could be collimated into an exhaust jet moving at 0.94c. In realistic matter/antimatter reactions, this jet only represents a fraction of the reaction's mass-energy: over 60% of it is lost as gamma-rays, collimation is not perfect, and some pions are not reflected backward by the nozzle. Thus, the effective exhaust speed for the entire reaction drops to just 0.58c. [3] Alternate propulsion schemes include physical confinement of hydrogen atoms in an antiproton and pion-transparent beryllium reaction chamber with collimation of the reaction products achieved with a single external electromagnet; see Project Valkyrie.

Sources

Related Research Articles

<span class="mw-page-title-main">Antimatter</span> Material composed of antiparticles of the corresponding particles of ordinary matter

In modern physics, antimatter is defined as matter composed of the antiparticles of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge, parity, and time, known as CPT reversal. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

<span class="mw-page-title-main">Antimatter rocket</span> Rockets using antimatter as their power source

An antimatter rocket is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket.

Delta-v, symbolized as and pronounced deltah-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of speed. As used in this context, it is not the same as the physical change in velocity of said spacecraft.

In special relativity, four-momentum (also called momentum–energy or momenergy) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with relativistic energy E and three-momentum p = (px, py, pz) = γmv, where v is the particle's three-velocity and γ the Lorentz factor, is

In the theory of relativity, four-acceleration is a four-vector that is analogous to classical acceleration. Four-acceleration has applications in areas such as the annihilation of antiprotons, resonance of strange particles and radiation of an accelerated charge.

The word "mass" has two meanings in special relativity: invariant mass is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy.

The Lorentz factor or Lorentz term is a quantity that expresses how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Tsiolkovsky rocket equation</span> Mathematical equation describing the motion of a rocket

The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity can thereby move due to the conservation of momentum. It is credited to Konstantin Tsiolkovsky, who independently derived it and published it in 1903, although it had been independently derived and published by William Moore in 1810, and later published in a separate book in 1813. Robert Goddard also developed it independently in 1912, and Hermann Oberth derived it independently about 1920.

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

<span class="mw-page-title-main">Larmor formula</span> Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

Rapidity is a measure for relativistic velocity. For one-dimensional motion, rapidities are additive. However, velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.

<span class="mw-page-title-main">Proper acceleration</span> Physical acceleration experienced by an object

In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.

A reaction engine is an engine or motor that produces thrust by expelling reaction mass, in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there is an equal, but opposite, reaction force."

<span class="mw-page-title-main">Proper velocity</span> Ratio in relativity

In relativity, proper velocityw of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object:

A photon rocket is a rocket that uses thrust from the momentum of emitted photons for its propulsion. Photon rockets have been discussed as a propulsion system that could make interstellar flight possible, which requires the ability to propel spacecraft to speeds at least 10% of the speed of light, v ≈ 0.1c = 30,000 km/s. Photon propulsion has been considered to be one of the best available interstellar propulsion concepts, because it is founded on established physics and technologies. Traditional photon rockets are proposed to be powered by onboard generators, as in the nuclear photonic rocket. The standard textbook case of such a rocket is the ideal case where all of the fuel is converted to photons which are radiated in the same direction. In more realistic treatments, one takes into account that the beam of photons is not perfectly collimated, that not all of the fuel is converted to photons, and so on. A large amount of fuel would be required and the rocket would be a huge vessel.

References

  1. Forward, Robert L. "A Transparent Derivation of the Relativistic Rocket Equation" Archived 2018-09-06 at the Wayback Machine (see the right side of equation 15 on the last page, with R as the ratio of initial to final mass and w as the specific impulse)
  2. "The Relativistic Rocket". Math.ucr.edu. Retrieved 2015-06-21.
  3. 1 2 3 Westmoreland, Shawn (2009). "A note on relativistic rocketry". Acta Astronautica. 67 (9–10): 1248–1251. arXiv: 0910.1965 . Bibcode:2010AcAau..67.1248W. doi:10.1016/j.actaastro.2010.06.050. S2CID   54735356.
  4. "New Antimatter Engine Design". 29 October 2006.
  5. "Reaching for the Stars - NASA Science". Science.nasa.gov. Retrieved 2015-06-21.
  6. 1 2 "How to Build an Anitmatter Rocket for Interstellar Missions" (PDF). Relativitycalculator.com. Retrieved 2015-06-21.