Relaxed stability

Last updated

In aviation, an aircraft is said to have relaxed stability if it has low or negative stability. [1] [2]

Contents

An aircraft with negative stability will have a tendency to change its pitch and bank angles spontaneously. An aircraft with negative stability cannot be trimmed to maintain a certain attitude, and will, when disturbed in pitch or roll, continue to pitch or roll in the direction of the disturbance at an ever-increasing rate.

This can be contrasted with the behaviour of an aircraft with positive stability, which can be trimmed to fly at a certain attitude, which it will continue to maintain in the absence of control input, and, if perturbed, will oscillate in simple harmonic motion on a decreasing scale around, and eventually return to, the trimmed attitude.[ citation needed ] A positively stable aircraft will also resist any bank movement. A Cessna 152 is an example of a stable aircraft. Similarly, an aircraft with neutral stability will not return to its original attitude without control input, but will continue to roll or pitch at a steady (neither increasing nor decreasing) rate.[ citation needed ]

Early aircraft

Early attempts at heavier-than-air flight were marked by a differing concept of stability from that used today. Most aeronautical investigators regarded flight as if it were not so different from surface locomotion, except the surface was elevated. They thought of changing direction in terms of a ship's rudder, so the flying machine would remain essentially level in the air, as did an automobile or a ship at the surface. The idea of deliberately leaning, or rolling, to one side either seemed undesirable or did not enter their thinking. [3]

Some of these early investigators, including Langley, Chanute, and later Santos-Dumont and the Voisin brothers, sought the ideal of "inherent stability" in a very strong sense, believing a flying machine should be built to automatically roll to a horizontal (lateral) position after any disturbance. They achieved this with the help of Hargrave cellular wings (wings with a box kite structure, including the vertical panels) and strongly dihedral wings. In most cases they did not include any means for a pilot to control the aircraft roll [4] [ page needed ]—they could control only the elevator and rudder. The unpredicted effect of this was that it was very hard to turn the aircraft without rolling. [4] [ page needed ] [5] They were also strongly affected by side gusts and side winds upon landing.[ citation needed ]

The Wright brothers designed their 1903 first powered Flyer with anhedral (drooping) wings, which are inherently unstable. They showed that a pilot can maintain control of lateral roll and it was a good way for a flying machine to turn—to "bank" or "lean" into the turn just like a bird or just like a person riding a bicycle. [6] Equally important, this method would enable recovery when the wind tilted the machine to one side. Although used in 1903, it would not become widely known in Europe until August 1908, when Wilbur Wright demonstrated to European aviators the importance of the coordinated use of elevator, rudder and roll control for making effective turns.[ citation needed ]

Vertical wing position

The vertical positioning of the wing changes the roll stability of an aircraft.

Unstable aircraft

The Lockheed F-117 Nighthawk is not an inherently stable design. Usaf.f117.750pix.jpg
The Lockheed F-117 Nighthawk is not an inherently stable design.

Modern military aircraft, particularly low observable ("stealth") designs, often exhibit instability as a result of their shape. The Lockheed F-117 Nighthawk, for instance, employs a highly non-traditional fuselage and wing shape in order to reduce its radar cross section and enable it to penetrate air defenses with relative impunity. However, the flat facets of the design reduce its stability to the point where a computerized fly-by-wire system is required for it to fly. [7]

Relaxed stability designs are not limited to military jets. The McDonnell Douglas MD-11 has a neutral stability design which was implemented to save fuel. To ensure stability for safe flight, an LSAS (Longitudinal Stability Augmentation System) was introduced to compensate for the MD-11's rather short horizontal stabilizer and ensure that the aircraft would remain stable. [8] However, there have been incidents in which the MD-11's relaxed stability caused an "inflight upset". [9]

Intentional instability

The F-16 Fighting Falcon is an intentionally unstable design. F-16 June 2008.jpg
The F-16 Fighting Falcon is an intentionally unstable design.

Many modern fighter aircraft often employ design elements that reduce stability to increase maneuverability. Greater stability leads to lesser control surface authority; therefore, a less stable design will have a faster response to control inputs. This is highly sought after in fighter aircraft design.

A less stable aircraft requires smaller control deflections to initiate maneuvering; consequently, drag and control surface imposed stresses will be reduced and aircraft responsiveness will be enhanced. Since these characteristics will typically make control by the pilot difficult or impossible, artificial stability will typically be imposed using computers, servos, and sensors as parts of a fly-by-wire control system.[ citation needed ]

See also

Citations

  1. Nguyen, L. T.; Ogburn, M. E.; Gilbert, W. P.; Kibler, K. S.; Brown, P. W.; Deal, P. L. (1 December 1979). "Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. NASA Technical Paper 1538". NASA Technical Publications (19800005879). NASA: 1. Retrieved 6 July 2022.
  2. Wilhelm, Knut; Schafranek, Dieter (October 1986). "Landing approach handling qualities of transport aircraft with relaxed static stability". Journal of Aircraft. 23 (10): 756–762. doi:10.2514/3.45377. ISSN   0021-8669 . Retrieved 6 July 2022.
  3. Crouch 2003, pp. 167–168.
  4. 1 2 Villard, Henry Serrano (2002). Contact!: the story of the early aviators. Mineola, NY: Dover Publications. pp. 39–53. ISBN   978-0-486-42327-2.
  5. Letcher, Piers (2003). Eccentric France: the Bradt guide to mad, magical and marvellous France . Chalfont St. Peter, England: Bradt Travel Guides. pp.  38–39. ISBN   978-1-84162-068-8.
  6. Tobin 2004, p. 70.
  7. Abzug, Malcolm; Larrabee, E. Eugene (2002). Airplane stability and control: a history of the technologies that made aviation possible (2 ed.). Cambridge [u.a.]: Cambridge Univ. Press. pp. 335–337. ISBN   978-0-521-80992-4.
  8. "The Effect of High Altitude and Center of Gravity on The Handling Characteristics of Swept-wing Commercial Airplanes". Aero Magazine. 1 (2). Boeing. Retrieved 29 June 2022.
  9. Pasztor, Andy (March 24, 2009). "FedEx Jet Has Control Issues". WSJ. Retrieved 1 October 2015.

General and cited references

Related Research Articles

<span class="mw-page-title-main">Fly-by-wire</span> Electronic flight control system

Fly-by-wire (FBW) is a system that replaces the conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires, and flight control computers determine how to move the actuators at each control surface to provide the ordered response. Implementations either use mechanical flight control backup systems or else are fully electronic.

<span class="mw-page-title-main">Fixed-wing aircraft</span> Heavier-than-air aircraft with fixed wings generating aerodynamic lift

A fixed-wing aircraft is a heavier-than-air flying machine, such as an airplane, which is capable of flight using aerodynamic lift. Fixed-wing aircraft are distinct from rotary-wing aircraft, and ornithopters. The wings of a fixed-wing aircraft are not necessarily rigid; kites, hang gliders, variable-sweep wing aircraft, and airplanes that use wing morphing are all classified as fixed-wing aircraft.

<span class="mw-page-title-main">Tailplane</span> Small lifting surface of a fixed-wing aircraft

A tailplane, also known as a horizontal stabiliser, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplanes. Not all fixed-wing aircraft have tailplanes. Canards, tailless and flying wing aircraft have no separate tailplane, while in V-tail aircraft the vertical stabiliser, rudder, and the tail-plane and elevator are combined to form two diagonal surfaces in a V layout.

<span class="mw-page-title-main">Aileron</span> Aircraft control surface used to induce roll

An aileron is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. Ailerons are used in pairs to control the aircraft in roll, which normally results in a change in flight path due to the tilting of the lift vector. Movement around this axis is called 'rolling' or 'banking'.

<span class="mw-page-title-main">Spin (aerodynamics)</span> Aviation term for a corkscrew downward path

In flight dynamics a spin is a special category of stall resulting in autorotation about the aircraft's longitudinal axis and a shallow, rotating, downward path approximately centred on a vertical axis. Spins can be entered intentionally or unintentionally, from any flight attitude if the aircraft has sufficient yaw while at the stall point. In a normal spin, the wing on the inside of the turn stalls while the outside wing remains flying. It is possible for both wings to stall, but the angle of attack of each wing, and consequently its lift and drag, are different.

<span class="mw-page-title-main">Flight control surfaces</span> Surface that allows a pilot to adjust and control an aircrafts flight attitude

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.

<span class="mw-page-title-main">Dihedral (aeronautics)</span> Angle between each wing or tail surface within a pair

In aeronautics, dihedral is the angle between the left and right wings of an aircraft. "Dihedral" is also used to describe the effect of sideslip on the rolling of the aircraft.

<span class="mw-page-title-main">Grumman X-29</span> 1984 experimental aircraft family by Grumman

The Grumman X-29 was an American experimental aircraft that tested a forward-swept wing, canard control surfaces, and other novel aircraft technologies. The X-29 was developed by Grumman, and the two built were flown by NASA and the United States Air Force. The aerodynamic instability of the X-29's airframe required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, and to reduce weight. The aircraft first flew in 1984, and two X-29s were flight tested through 1991.

<span class="mw-page-title-main">Aircraft flight control system</span> How aircraft are controlled

A conventional fixed-wing aircraft flight control system (AFCS) consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered flight controls as they change speed.

<span class="mw-page-title-main">Elevator (aeronautics)</span> Aircraft control surface used to control pitch

Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer. They may be the only pitch control surface present, and are sometimes located at the front of the aircraft or integrated into a rear "all-moving tailplane", also called a slab elevator or stabilator.

<span class="mw-page-title-main">Stabilator</span> Fully movable aircraft stabilizer

A stabilator is a fully movable aircraft horizontal stabilizer. It serves the usual functions of longitudinal stability, control and stick force requirements otherwise performed by the separate parts of a conventional horizontal stabilizer and elevator. Apart from reduced drag, particularly at high Mach numbers, it is a useful device for changing the aircraft balance within wide limits, and for reducing stick forces.

<span class="mw-page-title-main">Empennage</span> Tail section of an aircraft containing stabilizers

The empennage, also known as the tail or tail assembly, is a structure at the rear of an aircraft that provides stability during flight, in a way similar to the feathers on an arrow. The term derives from the French language verb empenner which means "to feather an arrow". Most aircraft feature an empennage incorporating vertical and horizontal stabilising surfaces which stabilise the flight dynamics of yaw and pitch, as well as housing control surfaces.

<span class="mw-page-title-main">Airplane</span> Powered, flying vehicle with wings

An airplane or aeroplane, informally plane, is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spectrum of uses for airplanes includes recreation, transportation of goods and people, military, and research. Worldwide, commercial aviation transports more than four billion passengers annually on airliners and transports more than 200 billion tonne-kilometers of cargo annually, which is less than 1% of the world's cargo movement. Most airplanes are flown by a pilot on board the aircraft, but some are designed to be remotely or computer-controlled such as drones.

<span class="mw-page-title-main">Vertical stabilizer</span> Aircraft component

A vertical stabilizer or tail fin is the static part of the vertical tail of an aircraft. The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it. Their role is to provide control, stability and trim in yaw. It is part of the aircraft empennage, specifically of its stabilizers.

<span class="mw-page-title-main">Stabilizer (aeronautics)</span> Aircraft component

An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.

The dynamic stability of an aircraft refers to how the aircraft behaves after it has been disturbed following steady non-oscillating flight.

<span class="mw-page-title-main">Canard (aeronautics)</span> Aircraft configuration in which a small wing is placed in front of the main wing

In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. Canard wings are also extensively used in guided missiles and smart bombs.

<span class="mw-page-title-main">Tailless aircraft</span> Aircraft whose only horizontal aerodynamic surface is its main wing

In aeronautics, a tailless aircraft is an aircraft with no other horizontal aerodynamic surface besides its main wing. It may still have a fuselage, vertical tail fin, and/or vertical rudder.

In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength.

<span class="mw-page-title-main">Slow roll (aeronautics)</span> Aircraft manoeuvre

A slow roll is a roll made by an airplane, in which the plane makes a complete rotation around its roll axis while keeping the aircraft flying a straight and level flightpath. A slow roll is performed more slowly than an aileron roll; although it is not necessarily performed very slowly, it is performed slowly enough to allow the pilot to maintain balance, keeping a steady flightpath, pitch angle, and height (altitude) throughout the maneuver. The maneuver is performed by rolling the airplane at a controlled rate with the ailerons, and moving the elevators and rudder in opposition, or "cross-controlling," to keep the plane on a steady, level flightpath.