This article needs additional citations for verification .(April 2023) |
![]() RACE (Remote Applications in Challenging Environments) | |
Abbreviation | RACE |
---|---|
Formation | 2014 |
Type | Research association/institute |
Purpose | Remote handling applications |
Location |
|
Region served | Worldwide |
Parent organization | UKAEA |
Affiliations | The Welding Institute, National Physical Laboratory (United Kingdom) |
Website | http://www.race.ukaea.uk/ |
Remote Applications in Challenging Environments (RACE) is a remote handling and robotics test facility located at Culham Science Centre near Oxford, UK, operated by UKAEA. [1] As part of the UK Government's Robotics and Autonomous Systems Strategy (RAS) this is one of the initiatives that is supporting development and growth in remote handling. RACE uses the broad range of expertise from UKAEA and CCFE's past experience in remote handling used on JET (Joint European Torus).
RACE defines a ‘challenging environment’ as one in which conditions make it impossible or unacceptable for people to conduct useful work. The physical challenges to overcome might include high radiation, extreme temperatures, limited access, operation in vacuum and magnetic fields. Combinations of such conditions are routinely found in sectors including nuclear, space, petrochemical, construction and mining. [2] RACE is partnering with industry and academia to use other skills in robotics and remote handling to develop solutions that work reliably, safely and cost effectively in the most extreme environments imaginable. RACE's long-term goal is to design and operate plant and machinery for long periods with zero manual intervention.
Created in 2014, RACE is the new branded name for the UKAEA remote handling unit. This unit has been around since the 1990s supporting the Joint European Torus nuclear fusion experiment. Now RACE uses all the gained knowledge in Remote Handling (also known as Telerobotics), from more than 30,000 hours of unique and diverse operations in the vessel of JET. Remote operations in-vessel at JET have included, cutting, welding, bolting and handling of approximately 7000 components in the change of all the tiles in JET to the ITER-like wall.
JET is the world's largest operation experimental tokamak nuclear fusion reactor. Bombardment by high-energy neutrons produced in the nuclear fusion reactions are able to activate some components and support structures, rendering them radioactive for long periods of time. This was most severe after the first DT (Deuterium/Tritium) experiments on JET in 1997. Furthermore, many plasma facing tiles are covered in beryllium, which, if breathed in as dust, poses a further hazard to anyone working inside the reactor. Therefore, JET has always placed great emphasis on its Remote Handling, to ensure a maximum of tasks can be carried out fully remotely.
Two 12m long snake-like booms reach into the vacuum vessel delivering cameras and tools to enable operators to work remotely.
The primary tool is MASCOT, a haptic Local-Remote manipulator, that allows the operator to feel every action from carrying a new component to tightening a bolt. Nine lengthy shutdowns have been completed that have relied on this system and the operators have become highly skilled at the most dexterous of tasks.
The JET machine is a complex device where the detailed configuration changes as the physics experimental requirements dictate. The Remote Handling system is required to fulfil two functions:
Experience shows that Remote Handling interventions achieve higher precision and introduce less impurities than sending people inside the torus as they did in the past.
JET is a seriously challenging environment for robotics: high radiation dose, elevated temperatures, limited access, large complex equipment and some very challenging critical path inspection and maintenance procedures that must be completed reliably and without failure.
RACE will be developing robotics solutions for the ITER international fusion experiment in Cadarache, France.
Remote operations and maintenance will be critical for the effective and efficient operation of the ITER machine in the full nuclear phase. Some areas that require inspection or maintenance will not be manually accessible due to radiation and lack of space and will require deployment of bespoke remote maintenance systems. RACE is supporting industry in the development of a number of critical remote handling systems including the Divertor Remote Handling System (RHS), Neutral Beam RHS and Cask & Plug RHS. [1]
DEMO is the conceptual demonstration fusion power plant using all of the knowledge gained in nuclear fusion to create a commercial power plant.
After ITER, DEMO will supply fusion electricity to the grid and will demonstrate fusion's feasibility as a power source. RACE plays a leading role in developing DEMO's Remote Handling concepts. It is recognised that remote maintenance will be device defining and mission critical for future fusion power plants. A fusion reactor must be designed to be maintained remotely by bespoke remotely operated tools. Furthermore, during operations any failure of these tools will affect plant availability and hence impact commercial viability.
RACE has refurbished a large manipulator, called the Telescopic Articulated Remote Manipulator (TARM), to use as a research test bed for heavy payload manipulation with a flexible, hyper redundant mechanism. This research will establish whether the concepts have potential to be developed into validated engineering designs that can be delivered within cost and reliability parameters required to deliver commercially viable base load electricity from fusion.
RACE in partnership with the Science & Technology Facilities Council is facilitating a major contract to design, manufacture and install remotely operated equipment in the Active Cell Facility of the European Spallation Source (ESS) which is under construction in Lund, Sweden.
The Active Cell Facility will receive activated components from the ESS target station which contains a rotating tungsten target wheel. The target wheel will need to be exchanged every few years. It needs to be processed and packaged before being shipped to a long-term waste store.
Due to the size of the target wheel the Active Cell Facility is a 12m by 12m by 12m reinforced concrete cell. Operations within a closed box of this size cannot be conducted using through-wall manipulators so the design relies on remotely operated equipment delivered by two remotely operated cranes. The cell has no windows, so operators sat in adjacent rooms will use multiple cameras to control the various handling and size reduction processes. Equipment in the cell will consist of cutting equipment for size reduction, power manipulators (aka robots), cranes, shielding and transit cases. Tasks to be conducted include processing, repair, refurbishment, testing and disposal of large activated components.
A common thread in all of RACE's activities is ‘system of systems’ control. JET, ITER, DEMO and ESS are examples of complex systems reliant on efficient, collaborative operation of multiple robotic devices.
As the complexity of robotics and autonomous systems grows, systems will need to be adapted and combined in different ways to achieve unique functionalities. Furthermore, the ability to plan to cope with regular software and hardware updates and equipment obsolescence is required. RACE has developed integrated digital tools including virtual reality, augmented reality, haptics, operations management and condition monitoring for simulation and real hardware control. At the heart of this digital toolkit is a ‘system of systems’ network protocol.
This software has been designed to enable ‘self-describing’ hardware to offer and request data from other members. This addresses the perennial problem of obsolescence and rapidly changing networks and it also enables software tools, including user interfaces, to access and control the full range of hardware devices and sensors. The prototype software has been used to control bespoke and commercial off-the shelf equipment from multiple vendors. It enables the use of all modern technologies regardless of the vendor or the platform type.
Connected and Autonomous Vehicles (CAV) are expected to provide huge social, industrial and economic benefits to the world. These innovative vehicles offer the potential to expand our industrial base, increase productivity, improve safety, decrease congestion and free up space usually devoted to vehicles in urban areas. Autonomous vehicles may also change where people live and work and will affect the design of transport systems, our homes, towns and cities.
With such a far-reaching new technology it is essential to establish comprehensive test facilities that allow interested stakeholders to explore the technical, commercial, ethical, legal and social issues. RACE has access to 10 kilometres of roads, junctions, roundabouts traffic lights and pedestrian crossings within the secure Culham site.
In partnership with Millbrook (part of Spectris Plc) RACE has won funding from the Centre for Connected and Autonomous Vehicles to host part of the UK's CAV Testbed. Four locations will be promoted globally by Meridian and used to explore all issues regarding the deployment of autonomous vehicles including mobility as a service.
RACE is also part of the DRIVEN consortium which is developing a fleet of six vehicles which will drive autonomously (with an onboard safety driver) from Oxford to London in 2019. Oxbotica, the autonomous vehicle spin out from Oxford University, has been using the roads around RACE for more than 12 months and has accumulated more than 5000 km of Level 4 autonomous vehicle driving.
Additional investment has been secured to develop a ‘CAV Pit Lane’ for use by developers. RACE will become a hub for autonomous vehicle testing working with vehicle manufacturers, software companies, insurers, regulators, councils, service providers and the public.
The comprehensive suite of standard test methods enables independent evaluation of robotic capabilities with quantifiable results. Standards have been developed to measure remote systems’ mobility, sensors, energy consumption, communications, dexterity, durability, reliability, logistics, safety, autonomy, and operator proficiency.
These methods will help robotics developers evaluate performance against user needs, help guide purchasing and deployment decisions, and provide focused training for operators.
This facility is unique in the UK providing robotic developers with an internationally recognised benchmarking system.
RACE TEST is a neutral test facility that is independent from manufacturers, enabling an open comparison of system performance.
A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor.
This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.
The Joint European Torus, or JET, is an operational magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility is a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine.
ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. Upon completion of construction of the main reactor and first plasma, planned for late 2025, it will be the world's largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor. It is being built next to the Cadarache facility in southern France. ITER will be the largest of more than 100 fusion reactors built since the 1950s, with ten times the plasma volume of any other tokamak operating today.
A remotely operated underwater vehicle is a tethered underwater mobile device, also commonly called an underwater robot.
Telerobotics is the area of robotics concerned with the control of semi-autonomous robots from a distance, chiefly using television, wireless networks or tethered connections. It is a combination of two major subfields, which are teleoperation and telepresence.
The Mobile Servicing System (MSS), is a robotic system on board the International Space Station (ISS). Launched to the ISS in 2001, it plays a key role in station assembly and maintenance; it moves equipment and supplies around the station, supports astronauts working in space, and services instruments and other payloads attached to the ISS and is used for external maintenance. Astronauts receive specialized training to enable them to perform these functions with the various systems of the MSS.
The United Kingdom Atomic Energy Authority is a UK government research organisation responsible for the development of fusion energy. It is an executive non-departmental public body of the Department for Business, Energy and Industrial Strategy (BEIS).
Teleoperation indicates operation of a system or machine at a distance. It is similar in meaning to the phrase "remote control" but is usually encountered in research, academia and technology. It is most commonly associated with robotics and mobile robots but can be applied to a whole range of circumstances in which a device or machine is operated by a person from a distance.
An unmanned ground vehicle (UGV) is a vehicle that operates while in contact with the ground and without an onboard human presence. UGVs can be used for many applications where it may be inconvenient, dangerous, or impossible to have a human operator present. Generally, the vehicle will have a set of sensors to observe the environment, and will either autonomously make decisions about its behavior or pass the information to a human operator at a different location who will control the vehicle through teleoperation.
The Scorpio is a brand of underwater submersible Remotely Operated Vehicle (ROV) manufactured by Perry Tritech used by sub-sea industries such as the oil industry for general operations, and by the Royal Navy and the United States Navy for submarine rescue services. Originally developed by AMETEK Straza of El Cajon, United States, they were subsequently developed by Perry Tritech. Although the design of the original Scorpio is over several decades old, it forms the basis for a current generation of Scorpio-branded ROVs. Scorpio ROVs are named in a sequence following the order of manufacture, such as "Scorpio 17" or "Scorpio 45" which refer to specific ROVs.
Subsea technology involves fully submerged ocean equipment, operations, or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term subsea is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power cables, seafloor mineral mining, oil and gas, and offshore wind power.
The United States Army DEVCOM Ground Vehicle Systems Center (GVSC) (formerly United States Army Tank Automotive Research, Development and Engineering Center (TARDEC)), located in Warren, Michigan, is the United States Armed Forces' research and development facility for advanced technology in ground systems. It is part of the U.S. Army Combat Capabilities Development Command (DEVCOM), a major subordinate command of the U.S. Army Futures Command. GVSC shares its facilities with the United States Army Tank-automotive and Armaments Command (TACOM). Current technology focus areas include Ground Vehicle Power and Mobility (GVPM), Ground System Survivability and Force Protection, among others.
Squad Mission Support System is an unmanned all terrain wheeled vehicle developed by Lockheed Martin.
Cegelec or Actemium is a French engineering company specialized in electrical infrastructure, HVAC, information technology, nuclear energy development, transport infrastructure, robotics and offering both public and private services. Cegelec was officially formed in 1989, and as of 2014 the company employs around 22,000 people and operates in 30 countries, with major activity in France, Brazil, Indonesia, the Middle East and Africa. It was acquired by Vinci Energies on 14 April 2010, assimilating the collection of Cegelec's sub-companies, which each specialize in a specific field or geographical region, into Vinci's corporate system.
The Culham Centre for Fusion Energy (CCFE) is the UK's national laboratory for fusion research. It is located at the Culham Science Centre, near Culham, Oxfordshire, and is the site of the Joint European Torus (JET), Mega Ampere Spherical Tokamak (MAST) and the now closed Small Tight Aspect Ratio Tokamak (START).
Adaptive collaborative control is the decision-making approach used in hybrid models consisting of finite-state machines with functional models as subcomponents to simulate behavior of systems formed through the partnerships of multiple agents for the execution of tasks and the development of work products. The term “collaborative control” originated from work developed in the late 1990s and early 2000 by Fong, Thorpe, and Baur (1999). It is important to note that according to Fong et al. in order for robots to function in collaborative control, they must be self-reliant, aware, and adaptive. In literature, the adjective “adaptive” is not always shown but is noted in the official sense as it is an important element of collaborative control. The adaptation of traditional applications of control theory in teleoperations sought initially to reduce the sovereignty of “humans as controllers/robots as tools” and had humans and robots working as peers, collaborating to perform tasks and to achieve common goals. Early implementations of adaptive collaborative control centered on vehicle teleoperation. Recent uses of adaptive collaborative control cover training, analysis, and engineering applications in teleoperations between humans and multiple robots, multiple robots collaborating among themselves, unmanned vehicle control, and fault tolerant controller design.
In nuclear fusion power research, the plasma-facing material (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel.
PAR Systems, Inc, is a systems engineering firm headquartered in Shoreview, Minnesota, specializing in automated manufacturing and material handling equipment. Subsidiaries include Jered LLC, specializing in marine equipment and cargo handling systems; Ederer LLC, specializing in custom and specialty cranes and associated equipment; CAMotion, specializing in advanced motion control and Cartesian palletizers and Oak River Technology, specializing in automated manufacturing, testing equipment and medical device manufacturing equipment. PAR systems specializes in engineering equipment for the nuclear field, designing equipment for nuclear industry hot cells, process facilities and decommissioning applications in Japan, UK and United States. In the aerospace industry, PAR specializes in precision cutting, trimming, drilling, coating, scanning and non-destructive testing equipment PAR Systems has quality certifications in ISO9001, AS9100, ISO13485 and ASME NQA-1 compliant.
Built Robotics Inc. is a San Francisco, California, US-based vehicular automation startup that develops software and hardware to automate construction equipment. The company was founded in San Francisco in 2016 by Noah Ready-Campbell and Andrew Liang. The company’s primary product is the “Exosystem,” an aftermarket kit that adds autonomous robotic capabilities onto existing heavy equipment through a combination of GPS, camera, and artificial intelligence technology.