In mathematics, a representation on coordinate rings is a representation of a group on coordinate rings of affine varieties.
Let X be an affine algebraic variety over an algebraically closed field k of characteristic zero with the action of a reductive algebraic group G. [1] G then acts on the coordinate ring of X as a left regular representation: . This is a representation of G on the coordinate ring of X.
The most basic case is when X is an affine space (that is, X is a finite-dimensional representation of G) and the coordinate ring is a polynomial ring. The most important case is when X is a symmetric variety; i.e., the quotient of G by a fixed-point subgroup of an involution.
Let be the sum of all G-submodules of that are isomorphic to the simple module ; it is called the -isotypic component of . Then there is a direct sum decomposition:
where the sum runs over all simple G-modules . The existence of the decomposition follows, for example, from the fact that the group algebra of G is semisimple since G is reductive.
X is called multiplicity-free (or spherical variety [2] ) if every irreducible representation of G appears at most one time in the coordinate ring; i.e., . For example, is multiplicity-free as -module. More precisely, given a closed subgroup H of G, define
by setting and then extending by linearity. The functions in the image of are usually called matrix coefficients. Then there is a direct sum decomposition of -modules (N the normalizer of H)
which is an algebraic version of the Peter–Weyl theorem (and in fact the analytic version is an immediate consequence.) Proof: let W be a simple -submodules of . We can assume . Let be the linear functional of W such that . Then . That is, the image of contains and the opposite inclusion holds since is equivariant.
This section needs expansion. You can help by adding to it. (June 2014) |
In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.
In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.
In mathematics, a Brauer algebra is an algebra introduced by Richard Brauer used in the representation theory of the orthogonal group. It plays the same role that the symmetric group does for the representation theory of the general linear group in Schur–Weyl duality.
In mathematics, especially in the field of representation theory, Schur functors are certain functors from the category of modules over a fixed commutative ring to itself. They generalize the constructions of exterior powers and symmetric powers of a vector space. Schur functors are indexed by Young diagrams in such a way that the horizontal diagram with n cells corresponds to the nth exterior power functor, and the vertical diagram with n cells corresponds to the nth symmetric power functor. If a vector space V is a representation of a group G, then also has a natural action of G for any Schur functor .
In mathematics, a finitely generated algebra is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K.
In mathematics, the group Hopf algebra of a given group is a certain construct related to the symmetries of group actions. Deformations of group Hopf algebras are foundational in the theory of quantum groups.
Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.
In mathematical physics the Knizhnik–Zamolodchikov equations, or KZ equations, are linear differential equations satisfied by the correlation functions of two-dimensional conformal field theories associated with an affine Lie algebra at a fixed level. They form a system of complex partial differential equations with regular singular points satisfied by the N-point functions of affine primary fields and can be derived using either the formalism of Lie algebras or that of vertex algebras.
In mathematics, generalized Verma modules are a generalization of a (true) Verma module, and are objects in the representation theory of Lie algebras. They were studied originally by James Lepowsky in the 1970s. The motivation for their study is that their homomorphisms correspond to invariant differential operators over generalized flag manifolds. The study of these operators is an important part of the theory of parabolic geometries.
In algebraic geometry, a function from a quasi-affine variety to its underlying field , is a regular function if for an arbitrary point in there exists an open neighborhood U around that point such that f can be expressed by a fraction like in which are polynomials on the ambient affine space of such that h is nowhere zero on U. A regular map from an arbitrary variety to affine space is a map given by n-tuple of regular functions. A morphism between two varieties is a continuous map like such that for every open set and every regular function like , the function is regular. The composition of morphisms are morphisms, so they constitute a category. In this category, a morphism which has an inverse is called isomorphism. We say that two varieties are isomorphic if there exist isomorphism between them or equivalently if their coordinate rings are isomorphic as algebras over their underlying fields.
In abstract algebra, a cellular algebra is a finite-dimensional associative algebra A with a distinguished cellular basis which is particularly well-adapted to studying the representation theory of A.
In mathematics, given an action of a group scheme G on a scheme X over a base scheme S, an equivariant sheafF on X is a sheaf of -modules together with the isomorphism of -modules
In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
In algebraic geometry, given a linear algebraic group G over a field k, a distribution on it is a linear functional satisfying some support condition. A convolution of distributions is again a distribution and thus they form the Hopf algebra on G, denoted by Dist(G), which contains the Lie algebra Lie(G) associated to G. Over a field of characteristic zero, Cartier's theorem says that Dist(G) is isomorphic to the universal enveloping algebra of the Lie algebra of G and thus the construction gives no new information. In the positive characteristic case, the algebra can be used as a substitute for the Lie group–Lie algebra correspondence and its variant for algebraic groups in the characteristic zero ; for example, this approach taken in.
This is a glossary of representation theory in mathematics.