Representation up to homotopy

Last updated

A Representation up to homotopy has several meanings. One of the earliest appeared in the `physical' context of constrained Hamiltonian systems. The essential idea is lifting a non-representation on a quotient to a representation up to strong homotopy on a resolution of the quotient. As a concept in differential geometry, it generalizes the notion of representation of a Lie algebra to Lie algebroids and nontrivial vector bundles. As such, it was introduced by Abad and Crainic. [1]

Contents

As a motivation consider a regular Lie algebroid (A,ρ,[.,.]) (regular meaning that the anchor ρ has constant rank) where we have two natural A-connections on g(A) = ker ρ and ν(A)= TM/im ρ respectively:

In the deformation theory of the Lie algebroid A there is a long exact sequence [2]

This suggests that the correct cohomology for the deformations (here denoted as Hdef) comes from the direct sum of the two modules g(A) and ν(A) and should be called adjoint representation. Note however that in the more general case where ρ does not have constant rank we cannot easily define the representations g(A) and ν(A). Instead we should consider the 2-term complex ATM and a representation on it. This leads to the notion explained here.

Definition

Let (A,ρ,[.,.]) be a Lie algebroid over a smooth manifold M and let Ω(A) denote its Lie algebroid complex. Let further E be a ℤ-graded vector bundle over M and Ω(A,E) = Ω(A)  Γ(E) be its ℤ-graded A-cochains with values in E. A representation up to homotopy of A on E is a differential operator D that maps

fulfills the Leibniz rule

and squares to zero, i.e. D2 = 0.

Homotopy operators

A representation up to homotopy as introduced above is equivalent to the following data

The correspondence is characterized as

Homomorphisms

A homomorphism between representations up to homotopy (E,DE) and (F,DF) of the same Lie algebroid A is a degree 0 map Φ:Ω(A,E)  Ω(A,F) that commutes with the differentials, i.e.

An isomorphism is now an invertible homomorphism. We denote Rep the category of equivalence classes of representations up to homotopy together with equivalence classes of homomorphisms.

In the sense of the above decomposition of D into a cochain map ∂, a connection ∇, and higher homotopies, we can also decompose the Φ as Φ0 + Φ1 + ... with

and then the compatibility condition reads

Examples

Examples are usual representations of Lie algebroids or more specifically Lie algebras, i.e. modules.

Another example is given by a p-form ωp together with E = M × ℝ[0]  ℝ[p] and the operator D =  + ωp where ∇ is the flat connection on the trivial bundle M × ℝ.

Given a representation up to homotopy as D =  +  + ω2 + ... we can construct a new representation up to homotopy by conjugation, i.e.

D' = ∂ ∇ + ω2ω3 + ....

Adjoint representation

Given a Lie algebroid (A,ρ,[.,.]) together with a connection ∇ on its vector bundle we can define two associated A-connections as follows [3]

Moreover, we can introduce the mixed curvature as

This curvature measures the compatibility of the Lie bracket with the connection and is one of the two conditions of A together with TM forming a matched pair of Lie algebroids.

The first observation is that this term decorated with the anchor map ρ, accordingly, expresses the curvature of both connections ∇bas. Secondly we can match up all three ingredients to a representation up to homotopy as:

Another observation is that the resulting representation up to homotopy is independent of the chosen connection ∇, basically because the difference between two A-connections is an (A  1 -form with values in End(E).

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity.

In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In a field of mathematics known as differential geometry, a Courant geometry was originally introduced by Zhang-Ju Liu, Alan Weinstein and Ping Xu in their investigation of doubles of Lie bialgebroids in 1997. Liu, Weinstein and Xu named it after Courant, who had implicitly devised earlier in 1990 the standard prototype of Courant algebroid through his discovery of a skew symmetric bracket on , called Courant bracket today, which fails to satisfy the Jacobi identity. Both this standard example and the double of a Lie bialgebra are special instances of Courant algebroids.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

In mathematical logic and set theory, an ordinal collapsing function is a technique for defining certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even large cardinals, and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an impredicative manner of naming ordinals.

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

<span class="mw-page-title-main">Causal fermion systems</span> Candidate unified theory of physics

The theory of causal fermion systems is an approach to describe fundamental physics. It provides a unification of the weak, the strong and the electromagnetic forces with gravity at the level of classical field theory. Moreover, it gives quantum mechanics as a limiting case and has revealed close connections to quantum field theory. Therefore, it is a candidate for a unified physical theory. Instead of introducing physical objects on a preexisting spacetime manifold, the general concept is to derive spacetime as well as all the objects therein as secondary objects from the structures of an underlying causal fermion system. This concept also makes it possible to generalize notions of differential geometry to the non-smooth setting. In particular, one can describe situations when spacetime no longer has a manifold structure on the microscopic scale. As a result, the theory of causal fermion systems is a proposal for quantum geometry and an approach to quantum gravity.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

A Lie bialgebroid is a mathematical structure in the area of non-Riemannian differential geometry. In brief a Lie bialgebroid are two compatible Lie algebroids defined on dual vector bundles. They form the vector bundle version of a Lie bialgebra.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.

References

  1. Abad, Camilo Arias; Crainic, Marius. "Representations up to homotopy of Lie algebroids". Journal für die reine und angewandte Mathematik. 2012 (663): 91–126. arXiv: 0901.0319 . doi:10.1515/CRELLE.2011.095.
  2. Crainic, Marius; Moerdijk, Ieke (2008). "Deformations of Lie brackets: cohomological aspects". Journal of the European Mathematical Society . 10 (4): 1037–1059. arXiv: math/0403434 . doi: 10.4171/JEMS/139 .
  3. Crainic, M.; Fernandes, R. L. (2005). "Secondary characteristic classes of Lie algebroids". Quantum field theory and noncommutative geometry. Lecture Notes in Physics. Vol. 662. Springer, Berlin. pp. 157–176. doi: 10.1007/11342786_9 .