Respiratory adaptation

Last updated

Respiratory adaptation is the specific change that the respiratory system undergoes in response to the demands of physical exertion. Intense physical exertion, such as that involved in fitness training, places elevated demands on the respiratory system. Over time, this results in respiratory changes as the system adapts to these requirements. [1] These changes ultimately result in an increased exchange of oxygen and carbon dioxide, which is accompanied by an increase in metabolism. [2] Respiratory adaptation is a physiological determinant of peak endurance performance, and in elite athletes, the pulmonary system is often a limiting factor to exercise under certain conditions. [3]

Contents

Neural control

Respiratory adaptation begins almost immediately after the initiation of the physical stress associated with exercise. This triggers signals from the motor cortex that stimulate the respiratory center of the brain stem, in conjunction with feedback from the proprioreceptors in the muscles and joints of the active limbs. [4]

Breathing rate

With higher intensity training, breathing rate is increased in order to allow more air to move in and out of the lungs, which enhances gas exchange. Endurance training typically results in an increase in the respiration rate. [4]

Lung capacity

With adaptation, lung capacity increases, allowing a greater quantity of air to move in and out. Endurance training typically results in an increase in tidal volume. [4]

Respiratory muscles

Muscles involved in respiration, including the diaphragm and intercostal muscles, increase in strength and endurance. This results in an improved ability to breathe in more air, for longer amounts of time with less fatigue. Aerobic training typically improves the endurance of respiratory muscles, whereas anaerobic training tends to increase the size and strength of respiratory muscles. [1]

Lung capillaries

Exercise increases the vascularization of the lungs. This allows the more blood flow in and out of the lungs. This enhances the uptake of oxygen, since there is greater surface area for blood to bind with haemoglobin. [1]

Alveoli

Respiratory adaptation results an increase in the number of alveoli, which enables more gas exchange to occur. This is coupled with an increase in alveolar oxygen tension. [5]

Related Research Articles

<span class="mw-page-title-main">Gill</span> Respiratory organ used by aquatic organisms

A gill is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are kept moist. The microscopic structure of a gill presents a large surface area to the external environment. Branchia is the zoologists' name for gills.

<span class="mw-page-title-main">Respiratory system</span> Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals, the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles, these are called alveoli, and in birds, they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds, the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

Apnea, BrE: apnoea, is the temporary cessation of breathing. During apnea, there is no movement of the muscles of inhalation, and the volume of the lungs initially remains unchanged. Depending on how blocked the airways are, there may or may not be a flow of gas between the lungs and the environment. If there is sufficient flow, gas exchange within the lungs and cellular respiration would not be severely affected. Voluntarily doing this is called holding one's breath. Apnea may first be diagnosed in childhood, and it is recommended to consult an ENT specialist, allergist or sleep physician to discuss symptoms when noticed; malformation and/or malfunctioning of the upper airways may be observed by an orthodontist.

<span class="mw-page-title-main">Aquatic respiration</span> Process whereby an aquatic animal obtains oxygen from water

Aquatic respiration is the process whereby an aquatic organism exchanges respiratory gases with water, obtaining oxygen from oxygen dissolved in water and excreting carbon dioxide and some other metabolic waste products into the water.

<span class="mw-page-title-main">Gas exchange</span> Process by which gases diffuse through a biological membrane

Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.

<span class="mw-page-title-main">Exercise physiology</span>

Exercise physiology is the physiology of physical exercise. It is one of the allied health professions, and involves the study of the acute responses and chronic adaptations to exercise. Exercise physiologists are the highest qualified exercise professionals and utilise education, lifestyle intervention and specific forms of exercise to rehabilitate and manage acute and chronic injuries and conditions.

<span class="mw-page-title-main">Exhalation</span> Flow of the respiratory current out of an organism

Exhalation is the flow of the breath out of an organism. In animals, it is the movement of air from the lungs out of the airways, to the external environment during breathing. This happens due to elastic properties of the lungs, as well as the internal intercostal muscles which lower the rib cage and decrease thoracic volume. As the thoracic diaphragm relaxes during exhalation it causes the tissue it has depressed to rise superiorly and put pressure on the lungs to expel the air. During forced exhalation, as when blowing out a candle, expiratory muscles including the abdominal muscles and internal intercostal muscles generate abdominal and thoracic pressure, which forces air out of the lungs.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment.

<span class="mw-page-title-main">Hypercapnia</span> Abnormally high tissue carbon dioxide levels

Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".

The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration.

<span class="mw-page-title-main">Anaerobic exercise</span> Physical exercise intense enough to cause lactate formation

Anaerobic exercise is a type of exercise that breaks down glucose in the body without using oxygen; anaerobic means "without oxygen". In practical terms, this means that anaerobic exercise is more intense, but shorter in duration than aerobic exercise.

<span class="mw-page-title-main">Altitude training</span> Athletic training at high elevations

Altitude training is the practice by some endurance athletes of training for several weeks at high altitude, preferably over 2,400 metres (8,000 ft) above sea level, though more commonly at intermediate altitudes due to the shortage of suitable high-altitude locations. At intermediate altitudes, the air still contains approximately 20.9% oxygen, but the barometric pressure and thus the partial pressure of oxygen is reduced.

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

<span class="mw-page-title-main">Effects of high altitude on humans</span> Environmental effects on physiology and mental health

The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in atmospheric air over the range in which humans can survive. The other major effect of altitude is due to lower ambient temperature.

<span class="mw-page-title-main">Breathing</span> Process of moving air in and out of the lungs

Breathing is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.

Pulmonary rehabilitation, also known as respiratory rehabilitation, is an important part of the management and health maintenance of people with chronic respiratory disease who remain symptomatic or continue to have decreased function despite standard medical treatment. It is a broad therapeutic concept. It is defined by the American Thoracic Society and the European Respiratory Society as an evidence-based, multidisciplinary, and comprehensive intervention for patients with chronic respiratory diseases who are symptomatic and often have decreased daily life activities. In general, pulmonary rehabilitation refers to a series of services that are administered to patients of respiratory disease and their families, typically to attempt to improve the quality of life for the patient. Pulmonary rehabilitation may be carried out in a variety of settings, depending on the patient's needs, and may or may not include pharmacologic intervention.

Hypoventilation training is a physical training method in which periods of exercise with reduced breathing frequency are interspersed with periods with normal breathing. The hypoventilation technique consists of short breath holdings and can be performed in different types of exercise: running, cycling, swimming, rowing, skating, etc.

Work of breathing (WOB) is the energy expended to inhale and exhale a breathing gas. It is usually expressed as work per unit volume, for example, joules/litre, or as a work rate (power), such as joules/min or equivalent units, as it is not particularly useful without a reference to volume or time. It can be calculated in terms of the pulmonary pressure multiplied by the change in pulmonary volume, or in terms of the oxygen consumption attributable to breathing.

Training masks are facial masks worn to limit the intake of air during breathing. Their ostensible purpose is to strengthen the respiratory musculature by making it work harder. There is some evidence that they may improve endurance capacity (VO2 max) and power output, but research into their benefits has so far generally proven inconclusive.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

References

  1. 1 2 3 "Respiratory System Adaptations to Exercise". www.ptdirect.com. PT Direct. Retrieved 2016-04-05.
  2. Alley, Thomas R. (2014-02-25). "Food sharing and empathic emotion regulation: an evolutionary perspective". Frontiers in Psychology. 5: 121. doi: 10.3389/fpsyg.2014.00121 . ISSN   1664-1078. PMC   3933786 . PMID   24611057.
  3. McKenzie, Donald C. (2012-05-01). "Respiratory physiology: adaptations to high-level exercise". British Journal of Sports Medicine. 46 (6): 381–384. doi:10.1136/bjsports-2011-090824. ISSN   1473-0480. PMID   22267571. S2CID   20618633.
  4. 1 2 3 "Physiologic Responses and Long-Term Adaptations to Exercise". Physical Activity and Health: A Report of the Surgeon General (PDF). Centers for Disease Control and Prevention. 1999.
  5. Hurtado, Alberto (30 September 1934). "Respiratory adaptation to anoxemia". American Journal of Physiology. 109 (4): 626–637. doi:10.1152/ajplegacy.1934.109.4.626 . Retrieved 4 April 2016.