Restriction fragment mass polymorphism

Last updated

Restriction Fragment Mass Polymorphism (RFMP) is a technology which digests DNA into oligonucleotide fragments, and detects variation of DNA sequences by molecular weight of the fragments. RFMP is a proprietary technology of GeneMatrix and can be utilized for genotyping viruses and microorganisms, and for human genome research. It is relatively restricted in usage due to the existence of many other genotyping products.

Contents

Overview

Restriction fragment mass polymorphism (RFMP) is an application of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), used for identifying individual nucleotides from a DNA fragment, most commonly used in labeling single nucleotide polymorphisms (SNP). RFMP was developed as a successor to the similar restriction fragment length polymorphism (RFLP) with the intent to allow for more SNPs. Rather than read out lengths of fragments as RFLP does, the individual nucleotides are read out using MALDI-TOF, which gives specific clarity over same-length site cutting. [1]

Methodology

Like RFLP, the basic mechanism for RFMP is to run polymerase chain reaction (PCR) over a test sample. Modified PCR primers are used to create known restriction sites for enzymatic digestion. From the known fragment lengths, then, selection by length size can filter out DNA of interest. Finally, MALDI-TOF is run on the fragments of interest to produce a m/z (mass-to-charge ratio) identification spectra of the individual nucleotides.

A specific process, for example, would be Hong's 2008 strategy, [1] outlined as the following:

These steps, like any experimental methodology, are case-specific, and can vary between experimental setup's goals and/or constraints.

Application

RFMP is still primarily limited to South Korean medical literature, as it is an array assay that competes with many other specialized detection systems (whereas RFMP serves as a more general functionality). [2]

There has been focus for RFMP to be used in HPV detection in recent years. This is motivated by fact that it has a sensitivity two log10-fold better than standard of care. [3] However, this still does not put RFMP as the clear top choice in the HPV landscape as there are others such as the Roche Linear Array, Abbot Realtime genotype II, and Sysmex HISCL HCV Gr that experimentally outperform RFMP in terms of detection accuracy. [4] [5]

Other limitations that hinder RFMP's spread in the medical world are attributed to its lack of information on SNP mutation rate [6] (e.g. masses have no correspondence to mutagenesis), as well as a general increase in user-handling difficulty compared to its peers.

See also

Related Research Articles

In molecular biology, restriction fragment length polymorphism (RFLP) is a technique that exploits variations in homologous DNA sequences, known as polymorphisms, populations, or species or to pinpoint the locations of genes within a sequence. The term may refer to a polymorphism itself, as detected through the differing locations of restriction enzyme sites, or to a related laboratory technique by which such differences can be illustrated. In RFLP analysis, a DNA sample is digested into fragments by one or more restriction enzymes, and the resulting restriction fragments are then separated by gel electrophoresis according to their size.

<span class="mw-page-title-main">Single-nucleotide polymorphism</span> Single nucleotide in genomic DNA at which different sequence alternatives exist

In genetics and bioinformatics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome that is present in a sufficiently large fraction of considered population.

A genetic marker is a gene or DNA sequence with a known location on a chromosome that can be used to identify individuals or species. It can be described as a variation that can be observed. A genetic marker may be a short DNA sequence, such as a sequence surrounding a single base-pair change, or a long one, like minisatellites.

<span class="mw-page-title-main">Matrix-assisted laser desorption/ionization</span> Ionization technique

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules and various organic molecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

<span class="mw-page-title-main">Amplified fragment length polymorphism</span>

AFLP-PCR or just AFLP is a PCR-based tool used in genetics research, DNA fingerprinting, and in the practice of genetic engineering. Developed in the early 1990s by KeyGene, AFLP uses restriction enzymes to digest genomic DNA, followed by ligation of adaptors to the sticky ends of the restriction fragments. A subset of the restriction fragments is then selected to be amplified. This selection is achieved by using primers complementary to the adaptor sequence, the restriction site sequence and a few nucleotides inside the restriction site fragments. The amplified fragments are separated and visualized on denaturing on agarose gel electrophoresis, either through autoradiography or fluorescence methodologies, or via automated capillary sequencing instruments.

Genotyping is the process of determining differences in the genetic make-up (genotype) of an individual by examining the individual's DNA sequence using biological assays and comparing it to another individual's sequence or a reference sequence. It reveals the alleles an individual has inherited from their parents. Traditionally genotyping is the use of DNA sequences to define biological populations by use of molecular tools. It does not usually involve defining the genes of an individual.

In molecular biology, SNP array is a type of DNA microarray which is used to detect polymorphisms within a population. A single nucleotide polymorphism (SNP), a variation at a single site in DNA, is the most frequent type of variation in the genome. Around 335 million SNPs have been identified in the human genome, 15 million of which are present at frequencies of 1% or higher across different populations worldwide.

<span class="mw-page-title-main">Molecular-weight size marker</span> Set of standards

A molecular-weight size marker, also referred to as a protein ladder, DNA ladder, or RNA ladder, is a set of standards that are used to identify the approximate size of a molecule run on a gel during electrophoresis, using the principle that molecular weight is inversely proportional to migration rate through a gel matrix. Therefore, when used in gel electrophoresis, markers effectively provide a logarithmic scale by which to estimate the size of the other fragments.

Surface-enhanced laser desorption/ionization (SELDI) is a soft ionization method in mass spectrometry (MS) used for the analysis of protein mixtures. It is a variation of matrix-assisted laser desorption/ionization (MALDI). In MALDI, the sample is mixed with a matrix material and applied to a metal plate before irradiation by a laser, whereas in SELDI, proteins of interest in a sample become bound to a surface before MS analysis. The sample surface is a key component in the purification, desorption, and ionization of the sample. SELDI is typically used with time-of-flight (TOF) mass spectrometers and is used to detect proteins in tissue samples, blood, urine, or other clinical samples, however, SELDI technology can potentially be used in any application by simply modifying the sample surface.

SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species. It is a form of genotyping, which is the measurement of more general genetic variation. SNPs are one of the most common types of genetic variation. An SNP is a single base pair mutation at a specific locus, usually consisting of two alleles. SNPs are found to be involved in the etiology of many human diseases and are becoming of particular interest in pharmacogenetics. Because SNPs are conserved during evolution, they have been proposed as markers for use in quantitative trait loci (QTL) analysis and in association studies in place of microsatellites. The use of SNPs is being extended in the HapMap project, which aims to provide the minimal set of SNPs needed to genotype the human genome. SNPs can also provide a genetic fingerprint for use in identity testing. The increase of interest in SNPs has been reflected by the furious development of a diverse range of SNP genotyping methods.

<span class="mw-page-title-main">Bisulfite sequencing</span> Lab procedure detecting 5-methylcytosines in DNA

Bisulfitesequencing (also known as bisulphite sequencing) is the use of bisulfite treatment of DNA before routine sequencing to determine the pattern of methylation. DNA methylation was the first discovered epigenetic mark, and remains the most studied. In animals it predominantly involves the addition of a methyl group to the carbon-5 position of cytosine residues of the dinucleotide CpG, and is implicated in repression of transcriptional activity.

An allele-specific oligonucleotide (ASO) is a short piece of synthetic DNA complementary to the sequence of a variable target DNA. It acts as a probe for the presence of the target in a Southern blot assay or, more commonly, in the simpler dot blot assay. It is a common tool used in genetic testing, forensics, and molecular biology research.

<span class="mw-page-title-main">Dopamine beta-hydroxylase</span> Mammalian protein found in Homo sapiens

Dopamine beta-hydroxylase (DBH), also known as dopamine beta-monooxygenase, is an enzyme that in humans is encoded by the DBH gene. Dopamine beta-hydroxylase catalyzes the conversion of dopamine to norepinephrine.

Diversity Arrays Technology (DArT) is a high-throughput genetic marker technique that can detect allelic variations to provides comprehensive genome coverage without any DNA sequence information for genotyping and other genetic analysis. The general steps involve reducing the complexity of the genomic DNA with specific restriction enzymes, choosing diverse fragments to serve as representations for the parent genomes, amplify via polymerase chain reaction (PCR), insert fragments into a vector to be placed as probes within a microarray, then fluorescent targets from a reference sequence will be allowed to hybridize with probes and put through an imaging system. The objective is to identify and quantify various forms of DNA polymorphism within genomic DNA of sampled species.

Molecular Inversion Probe (MIP) belongs to the class of Capture by Circularization molecular techniques for performing genomic partitioning, a process through which one captures and enriches specific regions of the genome. Probes used in this technique are single stranded DNA molecules and, similar to other genomic partitioning techniques, contain sequences that are complementary to the target in the genome; these probes hybridize to and capture the genomic target. MIP stands unique from other genomic partitioning strategies in that MIP probes share the common design of two genomic target complementary segments separated by a linker region. With this design, when the probe hybridizes to the target, it undergoes an inversion in configuration and circularizes. Specifically, the two target complementary regions at the 5’ and 3’ ends of the probe become adjacent to one another while the internal linker region forms a free hanging loop. The technology has been used extensively in the HapMap project for large-scale SNP genotyping as well as for studying gene copy alterations and characteristics of specific genomic loci to identify biomarkers for different diseases such as cancer. Key strengths of the MIP technology include its high specificity to the target and its scalability for high-throughput, multiplexed analyses where tens of thousands of genomic loci are assayed simultaneously.

COLD-PCR is a modified polymerase chain reaction (PCR) protocol that enriches variant alleles from a mixture of wildtype and mutation-containing DNA. The ability to preferentially amplify and identify minority alleles and low-level somatic DNA mutations in the presence of excess wildtype alleles is useful for the detection of mutations. Detection of mutations is important in the case of early cancer detection from tissue biopsies and body fluids such as blood plasma or serum, assessment of residual disease after surgery or chemotherapy, disease staging and molecular profiling for prognosis or tailoring therapy to individual patients, and monitoring of therapy outcome and cancer remission or relapse. Common PCR will amplify both the major (wildtype) and minor (mutant) alleles with the same efficiency, occluding the ability to easily detect the presence of low-level mutations. The capacity to detect a mutation in a mixture of variant/wildtype DNA is valuable because this mixture of variant DNAs can occur when provided with a heterogeneous sample – as is often the case with cancer biopsies. Currently, traditional PCR is used in tandem with a number of different downstream assays for genotyping or the detection of somatic mutations. These can include the use of amplified DNA for RFLP analysis, MALDI-TOF genotyping, or direct sequencing for detection of mutations by Sanger sequencing or pyrosequencing. Replacing traditional PCR with COLD-PCR for these downstream assays will increase the reliability in detecting mutations from mixed samples, including tumors and body fluids.

<span class="mw-page-title-main">Restriction site associated DNA markers</span> Type of genetic marker

Restriction site associated DNA (RAD) markers are a type of genetic marker which are useful for association mapping, QTL-mapping, population genetics, ecological genetics and evolutionary genetics. The use of RAD markers for genetic mapping is often called RAD mapping. An important aspect of RAD markers and mapping is the process of isolating RAD tags, which are the DNA sequences that immediately flank each instance of a particular restriction site of a restriction enzyme throughout the genome. Once RAD tags have been isolated, they can be used to identify and genotype DNA sequence polymorphisms mainly in form of single nucleotide polymorphisms (SNPs). Polymorphisms that are identified and genotyped by isolating and analyzing RAD tags are referred to as RAD markers. Although genotyping by sequencing presents an approach similar to the RAD-seq method, they differ in some substantial ways.

GeneMatrix Inc is a Korean company servicing molecular diagnostics. The company is listed on KOSDAQ:109820.

<span class="mw-page-title-main">BioNumerics</span> Bioinformatics software suite

BioNumerics is a bioinformatics desktop software application that manages microbiological data. It is developed by Applied Maths NV, a bioMérieux company.

Community fingerprinting is a set of molecular biology techniques that can be used to quickly profile the diversity of a microbial community. Rather than directly identifying or counting individual cells in an environmental sample, these techniques show how many variants of a gene are present. In general, it is assumed that each different gene variant represents a different type of microbe. Community fingerprinting is used by microbiologists studying a variety of microbial systems to measure biodiversity or track changes in community structure over time. The method analyzes environmental samples by assaying genomic DNA. This approach offers an alternative to microbial culturing, which is important because most microbes cannot be cultured in the laboratory. Community fingerprinting does not result in identification of individual microbe species; instead, it presents an overall picture of a microbial community. These methods are now largely being replaced by high throughput sequencing, such as targeted microbiome analysis and metagenomics.

References

  1. 1 2 Hong, Sun Pyo; Ji, Seung Il; Rhee, Hwanseok; Shin, Soo Kyeong; Hwang, Sun Young; Lee, Seung Hwan; Lee, Soong Deok; Oh, Heung-Bum; Yoo, Wangdon; Kim, Soo-Ok (2008-06-09). "A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry". BMC Genomics. 9: 276. doi: 10.1186/1471-2164-9-276 . ISSN   1471-2164. PMC   2442615 . PMID   18538037.
  2. Han, Mi-Soon; Park, Yongjung; Kim, Hyon-Suk (2017-07-26). "Comparison of Abbott RealTime genotype II, GeneMatrix restriction fragment mass polymorphism and Sysmex HISCL HCV Gr assays for hepatitis C virus genotyping". Clinical Chemistry and Laboratory Medicine. 55 (8): 1122–1128. doi:10.1515/cclm-2016-0130. ISSN   1437-4331. PMID   28076298. S2CID   22131281.
  3. Lee, Hyo-Pyo; Kim, Soo-Ok; Hwang, Tae Sook; Bae, Jae-Man; Kim, Soo Nyung; Kim, Jae Won; Hwang, Sun Young; Lee, Han Sung; Shin, Soo-Kyung; Cho, Woojae; Hong, Sun Pyo (2011). "Analytical and clinical performances of a restriction fragment mass polymorphism assay for detection and genotyping of a wide spectrum of human papillomaviruses". Journal of Medical Virology. 83 (3): 471–482. doi:10.1002/jmv.21992. PMID   21264868. S2CID   25029419.
  4. Lee, Hyo-Pyo; Cho, Woojae; Bae, Jae-Man; Shin, Ji Young; Shin, Soo-Kyung; Hwang, Sun Young; Min, Kyung Tae; Kim, Soo Nyung; Lee, Sun Joo; Kim, Soo-Ok; Yoo, Wang Don (2013). "Comparison of the clinical performance of restriction fragment mass polymorphism (RFMP) and Roche linear array HPV test assays for HPV detection and genotyping". Journal of Clinical Virology. 57 (2): 130–135. doi:10.1016/j.jcv.2013.01.014. PMID   23410688.
  5. Sohn, Yong-Hak; Ko, Sun-Young; Kim, Myeong Hee; Oh, Heung-Bum (2010-01-01). "Performance evaluation of the Abbott RealTime HCV Genotype II for hepatitis C virus genotyping". Clinical Chemistry and Laboratory Medicine. 48 (4): 469–474. doi:10.1515/CCLM.2010.093. ISSN   1437-4331. PMID   20128734. S2CID   1969132.
  6. Lee, J.-H.; Hachiya, A.; Shin, S.-K.; Lee, J.; Gatanaga, H.; Oka, S.; Kirby, K.A.; Ong, Y.T.; Sarafianos, S.G.; Folk, W.R.; Yoo, W. (2013). "Restriction fragment mass polymorphism (RFMP) analysis based on MALDI-TOF mass spectrometry for detecting antiretroviral resistance in HIV-1 infected patients". Clinical Microbiology and Infection. 19 (6): E263–E270. doi:10.1111/1469-0691.12167. PMC   7121230 . PMID   23480551.