Return ratio

Last updated

The return ratio of a dependent source in a linear electrical circuit is the negative of the ratio of the current (voltage) returned to the site of the dependent source to the current (voltage) of a replacement independent source. The terms loop gain and return ratio are often used interchangeably; however, they are necessarily equivalent only in the case of a single feedback loop system with unilateral blocks. [1]

Contents

Calculating the return ratio

Figure 1: Collector-to-base biased bipolar amplifier Bipolar transresistance amplifier.PNG
Figure 1: Collector-to-base biased bipolar amplifier

The steps for calculating the return ratio of a source are as follows: [2]

  1. Set all independent sources to zero.
  2. Select the dependent source for which the return ratio is sought.
  3. Place an independent source of the same type (voltage or current) and polarity in parallel with the selected dependent source.
  4. Move the dependent source to the side of the inserted source and cut the two leads joining the dependent source to the independent source.
  5. For a voltage source the return ratio is minus the ratio of the voltage across the dependent source divided by the voltage of the independent replacement source.
  6. For a current source, short-circuit the broken leads of the dependent source. The return ratio is minus the ratio of the resulting short-circuit current to the current of the independent replacement source.

Other Methods

These steps may not be feasible when the dependent sources inside the devices are not directly accessible, for example when using built-in "black box" SPICE models or when measuring the return ratio experimentally. For SPICE simulations, one potential workaround is to manually replace non-linear devices by their small-signal equivalent model, with exposed dependent sources. However this will have to be redone if the bias point changes.

A result by Rosenstark shows that return ratio can be calculated by breaking the loop at any unilateral point in the circuit. The problem is now finding how to break the loop without affecting the bias point and altering the results. Middlebrook [3] and Rosenstark [4] have proposed several methods for experimental evaluation of return ratio (loosely referred to by these authors as simply loop gain), and similar methods have been adapted for use in SPICE by Hurst. [5] See Spectrum user note or Roberts, or Sedra, and especially Tuinenga. [6] [7] [8]

Example: Collector-to-base biased bipolar amplifier

Figure 2: Left - small-signal circuit corresponding to Figure 1; center - inserting independent source and marking leads to be cut; right - cutting the dependent source free and short-circuiting broken leads Inserting return ratio source.PNG
Figure 2: Left - small-signal circuit corresponding to Figure 1; center - inserting independent source and marking leads to be cut; right - cutting the dependent source free and short-circuiting broken leads

Figure 1 (top right) shows a bipolar amplifier with feedback bias resistor Rf driven by a Norton signal source. Figure 2 (left panel) shows the corresponding small-signal circuit obtained by replacing the transistor with its hybrid-pi model. The objective is to find the return ratio of the dependent current source in this amplifier. [9] To reach the objective, the steps outlined above are followed. Figure 2 (center panel) shows the application of these steps up to Step 4, with the dependent source moved to the left of the inserted source of value it, and the leads targeted for cutting marked with an x. Figure 2 (right panel) shows the circuit set up for calculation of the return ratio T, which is

The return current is

The feedback current in Rf is found by current division to be:

The base-emitter voltage vπ is then, from Ohm's law:

Consequently,

Application in asymptotic gain model

The overall transresistance gain of this amplifier can be shown to be:

with R1 = RS || rπ and R2 = RD || rO.

This expression can be rewritten in the form used by the asymptotic gain model, which expresses the overall gain of a feedback amplifier in terms of several independent factors that are often more easily derived separately than the overall gain itself, and that often provide insight into the circuit. This form is:

where the so-called asymptotic gainG is the gain at infinite gm, namely:

and the so-called feed forward or direct feedthroughG0 is the gain for zero gm, namely:

For additional applications of this method, see asymptotic gain model and Blackman's theorem.

Related Research Articles

<span class="mw-page-title-main">Operational amplifier</span> High-gain voltage amplifier with a differential input

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential that is typically 100,000 times larger than the potential difference between its input terminals. The operational amplifier traces its origin and name to analog computers, where they were used to perform mathematical operations in linear, non-linear, and frequency-dependent circuits.

<span class="mw-page-title-main">Gain (electronics)</span> Ability of a circuit to increase the power or amplitude of a signal

In electronics, gain is a measure of the ability of a two-port circuit to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units. A gain greater than one, that is, amplification, is the defining property of an active component or circuit, while a passive circuit will have a gain of less than one.

<span class="mw-page-title-main">Negative-feedback amplifier</span>

A negative-feedback amplifier is an electronic amplifier that subtracts a fraction of its output from its input, so that negative feedback opposes the original signal. The applied negative feedback can improve its performance and reduces sensitivity to parameter variations due to manufacturing or environment. Because of these advantages, many amplifiers and control systems use negative feedback.

A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

<span class="mw-page-title-main">Differential amplifier</span> Electrical circuit component which amplifies the difference of two analog signals

A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs and and one output , in which the output is ideally proportional to the difference between the two voltages:

The Sallen–Key topology is an electronic filter topology used to implement second-order active filters that is particularly valued for its simplicity. It is a degenerate form of a voltage-controlled voltage-source (VCVS) filter topology.

<span class="mw-page-title-main">Common collector</span>

In electronics, a common collector amplifier is one of three basic single-stage bipolar junction transistor (BJT) amplifier topologies, typically used as a voltage buffer.

A current mirror is a circuit designed to copy a current through one active device by controlling the current in another active device of a circuit, keeping the output current constant regardless of loading. The current being "copied" can be, and sometimes is, a varying signal current. Conceptually, an ideal current mirror is simply an ideal inverting current amplifier that reverses the current direction as well. Or it can consist of a current-controlled current source (CCCS). The current mirror is used to provide bias currents and active loads to circuits. It can also be used to model a more realistic current source.

<span class="mw-page-title-main">Asymptotic gain model</span>

The asymptotic gain model is a representation of the gain of negative feedback amplifiers given by the asymptotic gain relation:

<span class="mw-page-title-main">Common source</span> Electronic amplifier circuit type

In electronics, a common-source amplifier is one of three basic single-stage field-effect transistor (FET) amplifier topologies, typically used as a voltage or transconductance amplifier. The easiest way to tell if a FET is common source, common drain, or common gate is to examine where the signal enters and leaves. The remaining terminal is what is known as "common". In this example, the signal enters the gate, and exits the drain. The only terminal remaining is the source. This is a common-source FET circuit. The analogous bipolar junction transistor circuit may be viewed as a transconductance amplifier or as a voltage amplifier.. As a transconductance amplifier, the input voltage is seen as modulating the current going to the load. As a voltage amplifier, input voltage modulates the current flowing through the FET, changing the voltage across the output resistance according to Ohm's law. However, the FET device's output resistance typically is not high enough for a reasonable transconductance amplifier, nor low enough for a decent voltage amplifier. As seen below in the formula, the voltage gain depends on the load resistance, so it cannot be applied to drive low-resistance devices, such as a speaker. Another major drawback is the amplifier's limited high-frequency response. Therefore, in practice the output often is routed through either a voltage follower, or a current follower, to obtain more favorable output and frequency characteristics. The CS–CG combination is called a cascode amplifier.

<span class="mw-page-title-main">Widlar current source</span> Electronic circuit

A Widlar current source is a modification of the basic two-transistor current mirror that incorporates an emitter degeneration resistor for only the output transistor, enabling the current source to generate low currents using only moderate resistor values.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

<span class="mw-page-title-main">Current divider</span>

In electronics, a current divider is a simple linear circuit that produces an output current (IX) that is a fraction of its input current (IT). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the total energy expended.

A Wilson current mirror is a three-terminal circuit that accepts an input current at the input terminal and provides a "mirrored" current source or sink output at the output terminal. The mirrored current is a precise copy of the input current. It may be used as a Wilson current source by applying a constant bias current to the input branch as in Fig. 2. The circuit is named after George R. Wilson, an integrated circuit design engineer who worked for Tektronix. Wilson devised this configuration in 1967 when he and Barrie Gilbert challenged each other to find an improved current mirror overnight that would use only three transistors. Wilson won the challenge.

In electronics, a differentiator is a circuit designed to produce an output approximately proportional to the rate of change of the input. A true differentiator cannot be physically realized, because it has infinite gain at infinite frequency. A similar effect can be achieved, however, by limiting the gain above some frequency. The differentiator circuit is essentially a high-pass filter.

The Miller theorem refers to the process of creating equivalent circuits. It asserts that a floating impedance element, supplied by two voltage sources connected in series, may be split into two grounded elements with corresponding impedances. There is also a dual Miller theorem with regards to impedance supplied by two current sources connected in parallel. The two versions are based on the two Kirchhoff's circuit laws.

<span class="mw-page-title-main">Transimpedance amplifier</span> Amplifier that converts current to voltage

In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers.

The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.

<span class="mw-page-title-main">Dependent source</span>

In the theory of electrical networks, a dependent source is a voltage source or a current source whose value depends on a voltage or current elsewhere in the network.

Blackman's theorem is a general procedure for calculating the change in an impedance due to feedback in a circuit. It was published by Ralph Beebe Blackman in 1943, was connected to signal-flow analysis by John Choma, and was made popular in the extra element theorem by R. D. Middlebrook and the asymptotic gain model of Solomon Rosenstark. Blackman's approach leads to the formula for the impedance Z between two selected terminals of a negative feedback amplifier as Blackman's formula:

References

  1. Richard R Spencer & Ghausi MS (2003). Introduction to electronic circuit design. Upper Saddle River NJ: Prentice Hall/Pearson Education. p. 723. ISBN   0-201-36183-3.
  2. Paul R. Gray, Hurst P J Lewis S H & Meyer RG (2001). Analysis and design of analog integrated circuits (Fourth ed.). New York: Wiley. p. §8.8 pp. 599–613. ISBN   0-471-32168-0.
  3. Middlebrook, RD:Loop gain in feedback systems 1; Int. J. of Electronics, vol. 38, no. 4, (1975) pp. 485-512
  4. Rosenstark, Sol: Loop gain measurement in feedback amplifiers; Int. J. of Electronics, vol. 57, No. 3 (1984) pp. 415-421
  5. Hurst, PJ: Exact simulation of feedback circuit parameters; IEEE Trans. on Circuits and Systems, vol. 38, No. 11 (1991) pp.1382-1389
  6. Gordon W. Roberts & Sedra AS (1997). SPICE (Second ed.). New York: Oxford University Press. pp. Chapter 8, pp. 256–262. ISBN   0-19-510842-6.
  7. Adel S Sedra & Smith KC (2004). Microelectronic circuits (Fifth ed.). New York: Oxford University Press. pp. Example 8.7, pp. 855–859. ISBN   0-19-514251-9.
  8. Paul W Tuinenga (1995). SPICE: a guide to circuit simulation and analysis using PSpice (Third ed.). Englewood Cliffs NJ: Prentice-Hall. pp. Chapter 8: Loop gain analysis. ISBN   0-13-436049-4.
  9. Richard R Spencer & Ghausi MS (2003). Example 10.7 pp. 723-724. ISBN   0-201-36183-3.

See also