Reynolds stress equation model

Last updated

Reynolds stress equation model (RSM), also referred to as second moment closures are the most complete classical turbulence model. In these models, the eddy-viscosity hypothesis is avoided and the individual components of the Reynolds stress tensor are directly computed. These models use the exact Reynolds stress transport equation for their formulation. They account for the directional effects of the Reynolds stresses and the complex interactions in turbulent flows. Reynolds stress models offer significantly better accuracy than eddy-viscosity based turbulence models, while being computationally cheaper than Direct Numerical Simulations (DNS) and Large Eddy Simulations.

Contents

Shortcomings of Eddy-viscosity based models

Eddy-viscosity based models like the and the models have significant shortcomings in complex, real-life turbulent flows. For instance, in flows with streamline curvature, flow separation, flows with zones of re-circulating flow or flows influenced by mean rotational effects, the performance of these models is unsatisfactory.

Such one- and two-equation based closures cannot account for the return to isotropy of turbulence, [1] observed in decaying turbulent flows. Eddy-viscosity based models cannot replicate the behaviour of turbulent flows in the Rapid Distortion limit, [2] where the turbulent flow essentially behaves as an elastic medium (instead of viscous).

Reynolds Stress Transport Equation

Reynolds Stress equation models rely on the Reynolds Stress Transport equation. The equation for the transport of kinematic Reynolds stress is [3]

Rate of change of + Transport of by convection = Transport of by diffusion + Rate of production of + Transport of due to turbulent pressure-strain interactions + Transport of due to rotation + Rate of dissipation of .

The six partial differential equations above represent six independent Reynolds stresses. While the Production term () is closed and does not require modelling, the other terms, like pressure strain correlation () and dissipation (), are unclosed and require closure models.

Production term

The Production term that is used in CFD computations with Reynolds stress transport equations is

Physically, the Production term represents the action of the mean velocity gradients working against the Reynolds stresses. This accounts for the transfer of kinetic energy from the mean flow to the fluctuating velocity field. It is responsible for sustaining the turbulence in the flow through this transfer of energy from the large scale mean motions to the small scale fluctuating motions.

This is the only term that is closed in the Reynolds Stress Transport Equations. It requires no models for its direct evaluation. All other terms in the Reynolds Stress Transport Equations are unclosed and require closure models for their evaluation.

Rapid Pressure-Strain Correlation term

The rapid pressure-strain correlation term redistributes energy among the Reynolds stresses components. This is dependent on the mean velocity gradient and rotation of the co-ordinate axes. Physically, this arises due to the interaction among the fluctuating velocity field and the mean velocity gradient field. The simplest linear form of the model expression is

Here is the Reynolds stress anisotropy tensor, is the rate of strain term for the mean velocity field and is the rate of rotation term for the mean velocity field. By convention, are the coefficients of the rapid pressure strain correlation model. There are many different models for the rapid pressure strain correlation term that are used in simulations. These include the Launder-Reece-Rodi model, [4] the Speziale-Sarkar-Gatski model, [5] the Hallback-Johanssen model, [6] the Mishra-Girimaji model, [7] besides others.

Slow Pressure-Strain Correlation term

The slow pressure-strain correlation term redistributes energy among the Reynolds stresses. This is responsible for the return to isotropy of decaying turbulence where it redistributes energy to reduce the anisotropy in the Reynolds stresses. Physically, this term is due to the self-interactions amongst the fluctuating field. The model expression for this term is given as [8]

There are many different models for the slow pressure strain correlation term that are used in simulations. These include the Rotta model [9] , the Speziale-Sarkar model [10] , besides others.

Dissipation term

The traditional modelling of the dissipation rate tensor assumes that the small dissipative eddies are isotropic. In this model the dissipation only affects the normal Reynolds stresses. [11]

or

where is dissipation rate of turbulent kinetic energy, when i = j and 0 when i ≠ j and is the dissipation rate anisostropy defined as .

However, as has been shown by e.g. Rogallo, [12] Schumann & Patterson, [13] Uberoi, [14] [15] Lee & Reynolds [16] and Groth, Hallbäck & Johansson [17] there exist many situations where this simple model of the dissipation rate tensor is insufficient due to the fact that even the small dissipative eddies are anisotropic. To account for this anisotropy in the dissipation rate tensor Rotta [18] proposed a linear model relating the anisotropy of the dissipation rate stress tensor to the anisotropy of the stress tensor.

or

where .

The parameter is assumed to be a function the turbulent Reynolds number, the mean strain rate etc. Physical considerations imply that should tend to zero when the turbulent Reynolds number tends to infinity and to unity when the turbulent Reynolds number tends to zero. However, the strong realizability condition implies that should be identically equal to 1.

Based on extensive physical and numerical (DNS and EDQNM) experiments in combination with a strong adherence to fundamental physical and mathematical limitations and boundary conditions Groth, Hallbäck and Johansson proposed an improved model for the dissipation rate tensor. [19]

where is the second invariant of the tensor and is a parameter that, in principle, could depend on the turbulent Reynolds number, the mean strain rate parameter etc.

However, Groth, Hallbäck and Johansson used rapid distortion theory to evaluate the limiting value of which turns out to be 3/4. [20] [21] Using this value the model was tested in DNS-simulations of four different homogeneous turbulent flows. Even though the parameters in the cubic dissipation rate model were fixed through the use of realizability and RDT prior to the comparisons with the DNS data the agreement between model and data was very good in all four cases.

The main difference between this model and the linear one is that each component of is influenced by the complete anisotropic state. The benefit of this cubic model is apparent from the case of an irrotational plane strain in which the streamwise component of is close to zero for moderate strain rates whereas the corresponding component of is not. Such a behaviour cannot be described by a linear model. [22]

Diffusion term

The modelling of diffusion term is based on the assumption that the rate of transport of Reynolds stresses by diffusion is proportional to the gradients of Reynolds stresses. This is an application of the concept of the gradient diffusion hypothesis to modeling the effect of spatial redistribution of the Reynolds stresses due to the fluctuating velocity field. The simplest form of that is followed by commercial CFD codes is

where , and .

Rotational term

The rotational term is given as [23]

here is the rotation vector, =1 if i,j,k are in cyclic order and are different,=-1 if i,j,k are in anti-cyclic order and are different and =0 in case any two indices are same.

Advantages of RSM

1) Unlike the k-ε model which uses an isotropic eddy viscosity, RSM solves all components of the turbulent transport.
2) It is the most general of all turbulence models and works reasonably well for a large number of engineering flows.
3) It requires only the initial and/or boundary conditions to be supplied.
4) Since the production terms need not be modeled, it can selectively damp the stresses due to buoyancy, curvature effects etc.

See also

See also

Related Research Articles

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

The Reynolds-averaged Navier–Stokes equations are time-averaged equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition, whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds. The RANS equations are primarily used to describe turbulent flows. These equations can be used with approximations based on knowledge of the properties of flow turbulence to give approximate time-averaged solutions to the Navier–Stokes equations. For a stationary flow of an incompressible Newtonian fluid, these equations can be written in Einstein notation in Cartesian coordinates as:

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

<span class="mw-page-title-main">Large eddy simulation</span> Mathematical model for turbulence

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum.

<span class="mw-page-title-main">Kolmogorov microscales</span> Smallest length scales in turbulent fluid flow

In fluid dynamics, Kolmogorov microscales are the smallest scales in the turbulent flow of fluids. At the Kolmogorov scale, viscosity dominates and the turbulence kinetic energy is dissipated into thermal energy. They are defined by

<span class="mw-page-title-main">Turbulence modeling</span> Use of mathematical models to simulate turbulent flow

In fluid dynamics, turbulence modeling is the construction and use of a mathematical model to predict the effects of turbulence. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. The equations governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows, CFD simulations use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved. All the spatial scales of the turbulence must be resolved in the computational mesh, from the smallest dissipative scales, up to the integral scale , associated with the motions containing most of the kinetic energy. The Kolmogorov scale, , is given by

The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 by James R. Rice, who showed that an energetic contour path integral was independent of the path around a crack.

In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow. Physically, the turbulence kinetic energy is characterised by measured root-mean-square (RMS) velocity fluctuations. In the Reynolds-averaged Navier Stokes equations, the turbulence kinetic energy can be calculated based on the closure method, i.e. a turbulence model.

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.

In continuum mechanics, a hypoelastic material is an elastic material that has a constitutive model independent of finite strain measures except in the linearized case. Hypoelastic material models are distinct from hyperelastic material models in that, except under special circumstances, they cannot be derived from a strain energy density function.

K-epsilon (k-ε) turbulence model is one of the most common models used in computational fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two equation model that gives a general description of turbulence by means of two transport equations. The original impetus for the K-epsilon model was to improve the mixing-length model, as well as to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows.

Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.

Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and/or time scales. This is usually achieved by immersing in a moving fluid a body with a multiscale, often fractal-like, arrangement of length scales. This arrangement of scales can be either passive or active

<span class="mw-page-title-main">Energy cascade</span> The transfer of energy between large and small scales of motion

In continuum mechanics, an energy cascade involves the transfer of energy from large scales of motion to the small scales or a transfer of energy from the small scales to the large scales. This transfer of energy between different scales requires that the dynamics of the system is nonlinear. Strictly speaking, a cascade requires the energy transfer to be local in scale, evoking a cascading waterfall from pool to pool without long-range transfers across the scale domain.

References

  1. Lumley, John; Newman, Gary (1977). "The return to isotropy of homogeneous turbulence". Journal of Fluid Mechanics. 82: 161–178. Bibcode:1977JFM....82..161L. doi:10.1017/s0022112077000585. S2CID   39228898.
  2. Mishra, Aashwin; Girimaji, Sharath (2013). "Intercomponent energy transfer in incompressible homogeneous turbulence: multi-point physics and amenability to one-point closures". Journal of Fluid Mechanics. 731: 639–681. Bibcode:2013JFM...731..639M. doi:10.1017/jfm.2013.343. S2CID   122537381.
  3. Bengt Andersson, Ronnie Andersson s (2012). Computational Fluid Dynamics for Engineers (First ed.). Cambridge University Press, New York. p. 97. ISBN   9781107018952.
  4. Launder, Brian Edward and Reece, G Jr and Rodi, W (1975). "Progress in the development of a Reynolds-stress turbulence closure". Journal of Fluid Mechanics. 68 (3): 537–566. Bibcode:1975JFM....68..537L. doi:10.1017/s0022112075001814. S2CID   14318348.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Speziale, Charles G and Sarkar, Sutanu and Gatski, Thomas B (1991). "Modelling the pressure--strain correlation of turbulence: an invariant dynamical systems approach". Journal of Fluid Mechanics. 227: 245–272. Bibcode:1991JFM...227..245S. doi:10.1017/s0022112091000101. S2CID   120810445.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Johansson, Arne V and Hallback, Magnus (1994). "Modelling of rapid pressure—strain in Reynolds-stress closures". Journal of Fluid Mechanics. 269: 143–168. Bibcode:1994JFM...269..143J. doi:10.1017/s0022112094001515. S2CID   120180201.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Mishra, Aashwin A and Girimaji, Sharath S (2017). "Toward approximating non-local dynamics in single-point pressure--strain correlation closures". Journal of Fluid Mechanics. 811: 168–188. Bibcode:2017JFM...811..168M. doi:10.1017/jfm.2016.730. S2CID   125249982.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Magnus Hallback (1996). Turbulence and Transition Modelling (First ed.). Kluwer Academic Publishers. p. 117. ISBN   978-0792340607.
  9. Rotta, J (1951). "Statistical theory of nonhomogeneous turbulence. ii". Z. Phys. 131: 51–77. doi:10.1007/BF01329645. S2CID   123243529.
  10. Sarkar, Sutanu and Speziale, Charles G (1990). "A simple nonlinear model for the return to isotropy in turbulence". Physics of Fluids A: Fluid Dynamics. 2 (1): 84–93. Bibcode:1990PhFlA...2...84S. doi:10.1063/1.857694. hdl: 2060/19890011041 . S2CID   120167112.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Peter S. Bernard & James M. Wallace (2002). Turbulent Flow: Analysis, Measurement & Prediction . John Wiley & Sons. p.  324. ISBN   978-0471332190.
  12. Rogallo, R S (1981). "Numerical experiments in homogeneous turbulence". NASA Tm 81315. 81: 31508. Bibcode:1981STIN...8131508R.
  13. Schumann, U & Patterson, G S (1978). "Numerical study of the return of axisymmetric turbulence to isotropy" (PDF). J. Fluid Mech. 88 (4): 711–735. Bibcode:1978JFM....88..711S. doi:10.1017/S0022112078002359. S2CID   124212093.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Uberoi, M S (1956). "Effect of wind-tunnel contraction on free-stream turbulence". Journal of the Aeronautical Sciences. 23 (8): 754–764. doi:10.2514/8.3651.
  15. Uberoi, M S (1978). "Equipartition of energy and local isotropy in turbulent flows" (PDF). J. Appl. Phys. 28 (10): 1165–1170. doi:10.1063/1.1722600. hdl: 2027.42/70587 .
  16. Lee, M J & Reynolds, W C (1985). "Numerical experiments on the structure of homogeneous turbulence". Thermosciences Div., Dept. Of Mech. Engineering, Stanford University, Rep. No. TF-24.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Groth, J, Hallbäck, M & Johansson, A V (1989). Measurement and modelling of anisotropic turbulent flows. Vol. Advances in Turbulence 2. Springer-Verlag Berlin Heidelberg. p. 84. doi:10.1007/978-3-642-83822-4. ISBN   978-3-642-83822-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  18. Rotta, J C (1951). "Statistische Theorie nichthomogener Turbulenz I". Z. Phys. 129 (6): 547–572. Bibcode:1951ZPhy..129..547R. doi:10.1007/BF01330059. S2CID   186236083.
  19. Hallbäck, M, Groth, J & Johansson, A V (1989). A Reynolds stress closure for the dissipation in anisotropic turbulent flows. Vol. Symposium on Turbulent Shear Flows, 7th, Stanford, CA, Aug. 21-23, 1989, Proceedings. Stanford University.{{cite book}}: CS1 maint: multiple names: authors list (link)
  20. Hallbäck, M, Groth, J & Johansson, A V (1990). "An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress clousers". Phys. Fluids A. 2: 1859. doi:10.1063/1.857908.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Groth, J, Hallbäck, M & Johansson, A V (1990). A nonlinear model for the dissipation rate term in Reynolds stress models. Vol. Engineering Turbulence Modelling and Experiments: Proceedings of the International Symposium on Engineering Turbulence Modelling and Measurements. Elsevier. ISBN   978-0444015631.{{cite book}}: CS1 maint: multiple names: authors list (link)
  22. Hallbäck, M, Groth, J & Johansson, A V (1991). Anisotropic Dissipation Rate - Implications for Reynolds Stress Models. Vol. Advances in Turbulence 3. Springer, Berlin, Heidelberg. p. 414. doi:10.1007/978-3-642-84399-0_45. ISBN   978-3-642-84401-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  23. H.Versteeg & W.Malalasekera (2013). An Introduction to Computational Fluid Dynamics (Second ed.). Pearson Education Limited. p. 96. ISBN   9788131720486.

Bibliography