Rivalta test

Last updated
Positive Rivalta test of a FIP-Aspiration. For visualisation the fluid was colored by Methylenic blue. Rivalta Probe.jpg
Positive Rivalta test of a FIP-Aspiration. For visualisation the fluid was colored by Methylenic blue.


Certain diseases can cause excessive accumulations of fluid in areas of the body such as the abdomen (ascites) or the pleural space around the lungs (pleural effusion) or the pericardial space around the heart. An estimate of the concentration of protein in such fluids can narrow the differential diagnosis and assist the clinician in establishing a diagnosis. For example, fluid accumulations due to congestive heart failure and liver failure (cirrhosis) are typically lower in protein content and are called transudates whereas fluid accumulations due to cancer and tuberculosis are typically higher in protein content and are called exudates. The Rivalta Test is a simple, inexpensive method that can be used in resource-limited settings to differentiate a transudate from an exudate. [1] It is a simple, inexpensive method that does not require special laboratory equipment and can be easily performed in private practice. The test was originally developed by the Italian researcher Rivalta around 1900 and was used to differentiate transudates and exudates in human patients. It is also useful in cats to differentiate between effusions due to feline infectious peritonitis (FIP) and effusions caused by other diseases. [2] Not only the high protein content, but high concentrations of fibrinogen and inflammatory mediators lead to a positive reaction.

Contents

Method

A test tube is filled with distilled water and acetic acid is added. To this mixture one drop of the effusion to be tested is added. If the drop dissipates, the test is negative, indicating a transudate. If the drop precipitates, the test is positive, indicating an exudate. [3]

Using a pH 4.0 acetic acid solution, 8 types of proteins were identified in Rivalta reaction-positive turbid precipitates: C-reactive protein (CRP), Alpha 1-antitrypsin (alpha1-AT), Orosomucoid ((Alpha-1-acid glycoprotein or AGP)), haptoglobin (Hp), transferrin (Tf), ceruloplasmin (Cp), fibrinogen (Fg), and hemopexin (Hpx). Since those are Acute-phase proteins, a positive Rivalta's test may be suggestive of inflammation. [4]

Procedure

To perform this test, a transparent reagent tube (volume 10 ml) is filled with approximately 7–8 ml distilled water, to which 1 drop of acetic acid (8%, plain white vinegar) is added and mixed thoroughly. On the surface of this solution, 1 drop of the effusion fluid is carefully layered. If the drop disappears and the solution remains clear, the Rivalta's test is defined as negative. If the drop retains its shape, stays attached to the surface or slowly floats down to the bottom of the tube (drop- or jelly-fish-like), the Rivalta's test is defined as positive.

The Rivalta's test had a high positive predictive value (86%) and a very high negative predictive value for FIP (96%) in a study in which cats that presented with effusion were investigated (prevalence of FIP 51%). [2] Positive Rivalta's test results can occur in cats with bacterial peritonitis or lymphoma.

Related Research Articles

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are common and play important roles in the technology and biological spheres.

A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid donates a proton to a base—in other words, it is a base with a hydrogen ion added to it, as in the reverse reaction it loses a hydrogen ion. On the other hand, a conjugate base is what is left over after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a species formed by the removal of a proton from an acid, as in the reverse reaction it is able to gain a hydrogen ion. Because some acids are capable of releasing multiple protons, the conjugate base of an acid may itself be acidic.

<span class="mw-page-title-main">Peritonitis</span> Medical condition

Peritonitis is inflammation of the localized or generalized peritoneum, the lining of the inner wall of the abdomen and cover of the abdominal organs. Symptoms may include severe pain, swelling of the abdomen, fever, or weight loss. One part or the entire abdomen may be tender. Complications may include shock and acute respiratory distress syndrome.

<span class="mw-page-title-main">Pleural cavity</span> Thin fluid-filled space between the two pulmonary pleurae (visceral and parietal) of each lung

The pleural cavity, pleural space, or interpleural space is the potential space between the pleurae of the pleural sac that surrounds each lung. A small amount of serous pleural fluid is maintained in the pleural cavity to enable lubrication between the membranes, and also to create a pressure gradient.

<span class="mw-page-title-main">Ascites</span> Abnormal build-up of fluid in the abdomen

Ascites is the abnormal build-up of fluid in the abdomen. Technically, it is more than 25 ml of fluid in the peritoneal cavity, although volumes greater than one liter may occur. Symptoms may include increased abdominal size, increased weight, abdominal discomfort, and shortness of breath. Complications can include spontaneous bacterial peritonitis.

<span class="mw-page-title-main">Nephrotic syndrome</span> Collection of symptoms due to kidney damage

Nephrotic syndrome is a collection of symptoms due to kidney damage. This includes protein in the urine, low blood albumin levels, high blood lipids, and significant swelling. Other symptoms may include weight gain, feeling tired, and foamy urine. Complications may include blood clots, infections, and high blood pressure.

<span class="mw-page-title-main">Pleural effusion</span> Accumulation of excess fluid in the pleural cavity

A pleural effusion is accumulation of excessive fluid in the pleural space, the potential space that surrounds each lung. Under normal conditions, pleural fluid is secreted by the parietal pleural capillaries at a rate of 0.6 millilitre per kilogram weight per hour, and is cleared by lymphatic absorption leaving behind only 5–15 millilitres of fluid, which helps to maintain a functional vacuum between the parietal and visceral pleurae. Excess fluid within the pleural space can impair inspiration by upsetting the functional vacuum and hydrostatically increasing the resistance against lung expansion, resulting in a fully or partially collapsed lung.

<span class="mw-page-title-main">Exudate</span> Fluid emitted through pores or a wound

An exudate is a fluid emitted by an organism through pores or a wound, a process known as exuding or exudation. Exudate is derived from exude 'to ooze' from Latin exsūdāre 'to sweat'.

<span class="mw-page-title-main">Pleural empyema</span> Medical condition

Pleural empyema is a collection of pus in the pleural cavity caused by microorganisms, usually bacteria. Often it happens in the context of a pneumonia, injury, or chest surgery. It is one of the various kinds of pleural effusion. There are three stages: exudative, when there is an increase in pleural fluid with or without the presence of pus; fibrinopurulent, when fibrous septa form localized pus pockets; and the final organizing stage, when there is scarring of the pleura membranes with possible inability of the lung to expand. Simple pleural effusions occur in up to 40% of bacterial pneumonias. They are usually small and resolve with appropriate antibiotic therapy. If however an empyema develops additional intervention is required.

<span class="mw-page-title-main">Feline infectious peritonitis</span> Highly deadly disease that affects cats

Feline infectious peritonitis (FIP) is the name given to a common and aberrant immune response to infection with feline coronavirus (FCoV).

<span class="mw-page-title-main">Chylothorax</span> Medical condition

A chylothorax is an abnormal accumulation of chyle, a type of lipid-rich lymph, in the space surrounding the lung. The lymphatics of the digestive system normally returns lipids absorbed from the small bowel via the thoracic duct, which ascends behind the esophagus to drain into the left brachiocephalic vein. If normal thoracic duct drainage is disrupted, either due to obstruction or rupture, chyle can leak and accumulate within the negative-pressured pleural space. In people on a normal diet, this fluid collection can sometimes be identified by its turbid, milky white appearance, since chyle contains emulsified triglycerides.

<span class="mw-page-title-main">Thoracentesis</span> Medical procedure

Thoracentesis, also known as thoracocentesis, pleural tap, needle thoracostomy, or needle decompression, is an invasive medical procedure to remove fluid or air from the pleural space for diagnostic or therapeutic purposes. A cannula, or hollow needle, is carefully introduced into the thorax, generally after administration of local anesthesia. The procedure was first performed by Morrill Wyman in 1850 and then described by Henry Ingersoll Bowditch in 1852.

Transudate is extravascular fluid with low protein content and a low specific gravity. It has low nucleated cell counts and the primary cell types are mononuclear cells: macrophages, lymphocytes and mesothelial cells. For instance, an ultrafiltrate of blood plasma is transudate. It results from increased fluid pressures or diminished colloid oncotic forces in the plasma.

<span class="mw-page-title-main">Pericardial effusion</span> Medical condition

A pericardial effusion is an abnormal accumulation of fluid in the pericardial cavity. The pericardium is a two-part membrane surrounding the heart: the outer fibrous connective membrane and an inner two-layered serous membrane. The two layers of the serous membrane enclose the pericardial cavity between them. This pericardial space contains a small amount of pericardial fluid. The fluid is normally 15-50 mL in volume. The pericardium, specifically the pericardial fluid provides lubrication, maintains the anatomic position of the heart in the chest, and also serves as a barrier to protect the heart from infection and inflammation in adjacent tissues and organs.

<span class="mw-page-title-main">Hypoalbuminemia</span> Medical condition

Hypoalbuminemia is a medical sign in which the level of albumin in the blood is low. This can be due to decreased production in the liver, increased loss in the gastrointestinal tract or kidneys, increased use in the body, or abnormal distribution between body compartments. Patients often present with hypoalbuminemia as a result of another disease process such as malnutrition as a result of severe anorexia nervosa, sepsis, cirrhosis in the liver, nephrotic syndrome in the kidneys, or protein-losing enteropathy in the gastrointestinal tract. One of the roles of albumin is being the major driver of oncotic pressure in the bloodstream and the body. Thus, hypoalbuminemia leads to abnormal distributions of fluids within the body and its compartments. As a result, associated symptoms include edema in the lower legs, ascites in the abdomen, and effusions around internal organs. Laboratory tests aimed at assessing liver function diagnose hypoalbuminemia. Once identified, it is a poor prognostic indicator for patients with a variety of different diseases. Yet, it is only treated in very specific indications in patients with cirrhosis and nephrotic syndrome. Treatment instead focuses on the underlying cause of the hypoalbuminemia. Albumin is an acute negative phase respondent and not a reliable indicator of nutrition status.

<span class="mw-page-title-main">Lactate dehydrogenase</span> Class of enzymes

Lactate dehydrogenase (LDH or LD) is an enzyme found in nearly all living cells. LDH catalyzes the conversion of lactate to pyruvate and back, as it converts NAD+ to NADH and back. A dehydrogenase is an enzyme that transfers a hydride from one molecule to another.

<span class="mw-page-title-main">Cat health</span> Health of domestic cats

The health of domestic cats is a well studied area in veterinary medicine.

<span class="mw-page-title-main">Urine test strip</span> Diagnostic tool used in urinalysis

A urine test strip or dipstick is a basic diagnostic tool used to determine pathological changes in a patient's urine in standard urinalysis.

Feline coronavirus (FCoV) is a positive-stranded RNA virus that infects cats worldwide. It is a coronavirus of the species Alphacoronavirus 1 which includes canine coronavirus (CCoV) and porcine transmissible gastroenteritis coronavirus (TGEV). It has two different forms: feline enteric coronavirus (FECV) that infects the intestines and feline infectious peritonitis virus (FIPV) that causes the disease feline infectious peritonitis (FIP).

Pandy's test is done on the CSF to detect the elevated levels of proteins. This test is named after the Hungarian neurologist, Pándy Kálmán (1868–1945) who developed this test in the year 1910.

References

  1. Berti-Bock G, Vial F, Premuda L, Rullière R (November 1979). "[Exudates, transudates and the Rivalta reaction (1895). Current status and historical premises]". Minerva Med. (in Italian). 70 (52): 3573–80. PMID   392338.
  2. 1 2 Hartmann et al., 2003
  3. "FELINE INFECTIOUS PERITONITIS (FIP) (A SUMMARY)". Archived from the original on 2009-04-25. Retrieved 2009-06-24.
  4. Sakai N, Iijima S, Shiba K (November 2004). "Reinvestigation of clinical value of Rivalta reaction of puncture fluid". Rinsho Byori. 52 (11): 877–82. PMID   15658465.