Robert A. Wittenmyer

Last updated

Robert A. Wittenmyer
Born (1976-04-01) April 1, 1976 (age 47)
Alma mater Williams College (BA)
Boston University (MA)
San Diego State University (MS)
University of Texas at Austin (PhD)
Occupation(s) Astrophysicist, Astronomer
Known fordiscovery of Gliese 832 c
Scientific career
Fields
Institutions

Robert A. Wittenmyer is an American-born Australian astrophysicist and astronomer. He has led the team of researchers who discovered the exoplanet Gliese 832 c. [1] He is the leader of a collaboration between Australian, Chinese, and the US exoplanet search team and also a member of the Anglo-Australian Planet Search . [2] He is currently employed by the University of Southern Queensland located in Toowoomba, Queensland, Australia as an Associate Professor.

Discoveries

Related Research Articles

<span class="mw-page-title-main">Gliese 667</span> Triple star system in the constellation Scorpius

Gliese 667 is a triple-star system in the constellation Scorpius lying at a distance of about 7.2 parsecs from Earth. All three of the stars have masses smaller than the Sun. There is a 12th-magnitude star close to the other three, but it is not gravitationally bound to the system. To the naked eye, the system appears to be a single faint star of magnitude 5.89.

<span class="mw-page-title-main">Gliese 687</span> Star in the constellation Draco

Gliese 687, or GJ 687 (Gliese–Jahreiß 687) is a red dwarf in the constellation Draco. This is one of the closest stars to the Sun and lies at an approximate distance of less than 15 light years. Even though it is close by, it has a magnitude of about 9, so it can only be seen through a moderately sized telescope. Gliese 687 has a high proper motion, advancing 1.304 arcseconds per year across the sky. It has a net relative velocity of about 39 km/s. It is known to have a Neptune-mass planet. Old books and articles refer to it as Argelander Oeltzen 17415.

<span class="mw-page-title-main">Gliese 876 b</span> Extrasolar planet orbiting Gliese 876

Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.

<span class="mw-page-title-main">Gliese 581d</span> Contested super-Earth orbiting Gliese 581

Gliese 581d was a candidate extrasolar planet orbiting within the Gliese 581 system, approximately 20.4 light-years away in the Libra constellation. It was the third planet claimed in the system and the fourth or fifth in order from the star. Multiple subsequent studies found that the planetary signal in fact originates from stellar activity, and thus the planet does not exist.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

<span class="mw-page-title-main">Stéphane Udry</span> Swiss astronomer

Stéphane Udry is an astronomer at the Geneva Observatory in Switzerland, whose current work is primarily the search for extra-solar planets. He and his team, in 2007, discovered a possibly terrestrial planet in the habitable zone of the Gliese 581 planetary system, approximately 20 light years away in the constellation Libra. He also led the observational team that discovered HD 85512 b, another most promisingly habitable exoplanet.

Gliese 832 is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.16 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 6 billion years old.

Gliese 86 is a K-type main-sequence star approximately 35 light-years away in the constellation of Eridanus. It has been confirmed that a white dwarf orbits the primary star. In 1998 the European Southern Observatory announced that an extrasolar planet was orbiting the star.

HD 142 b is a jovian exoplanet approximately 85.5 light years away in the constellation of Phoenix. This planet was discovered in 2001 by the Anglo-Australian Planet Search team.

<span class="mw-page-title-main">Gliese 86 b</span> Jovian planet orbiting Gliese 86 A

Gliese 86 b, sometimes referred to as Gliese 86 A b and/or shortened to Gl 86 b, is an extrasolar planet approximately 35 light-years away in the constellation of Eridanus. The planet was discovered orbiting a K-type main-sequence star by French scientists in November 1998. The planet orbits very close to the star, completing an orbit in 15.78 days.

Gliese 832 b is a gas giant exoplanet about 80% the mass of Jupiter, located 16.2 light-years from the Sun in the constellation of Grus, orbiting the red dwarf star Gliese 832.

Gliese 179 b is an extrasolar planet which orbits the M-type main sequence star Gliese 179, located approximately 40 light years away in the constellation Orion. This planet has a minimum mass somewhat less than Jupiter and it orbits at 2.42 AU from the star with an eccentricity slightly less than Pluto. The planetary distance ranges from 1.90 to 2.92 AU. This planet was discovered by using the radial velocity method from spectrograph taken at Keck Observatory on November 13, 2009. In 2023, the inclination and true mass of Gliese 179 b were determined via astrometry.

<span class="mw-page-title-main">Gliese 581g</span> Former candidate super-Earth orbiting Gliese 581

Gliese 581g was a candidate exoplanet postulated to orbit within the Gliese 581 system, twenty light-years from Earth. It was discovered by the Lick–Carnegie Exoplanet Survey, and was the sixth planet claimed to orbit the star; however, its existence could not be confirmed by the European Southern Observatory (ESO) / High Accuracy Radial Velocity Planet Searcher (HARPS) survey team, and was ultimately refuted. It was thought to be near the middle of the habitable zone of its star, meaning it could sustain liquid water—a necessity for all known life—on its surface, if there are favorable atmospheric conditions on the planet.

The Lick–Carnegie Exoplanet Survey (LCES) is a search for exoplanets using the Keck I optical telescope of the W. M. Keck Observatory in Hawaii. The survey is sponsored by NASA and the National Science Foundation. The survey comprises a decade of observations. The survey is led by Steven Vogt, professor of astronomy and astrophysics at University of California at Santa Cruz, and R. Paul Butler of the Carnegie Institution.

<span class="mw-page-title-main">Gliese 667 Cc</span> Goldilocks super-Earth orbiting Gliese 667 C

Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

<span class="mw-page-title-main">HD 114613</span> Star in the constellation Centaurus

HD 114613 is a fifth magnitude yellow subgiant that lies 66.7 light-years away in the constellation of Centaurus. The star may be host to a long-period giant planet.

<span class="mw-page-title-main">Gliese 180</span> Star in the constellation Eridanus

Gliese 180, is a small red dwarf star in the equatorial constellation of Eridanus. It is invisible to the naked eye with an apparent visual magnitude of 10.9. The star is located at a distance of 39 light years from the Sun based on parallax, and is drifting closer with a radial velocity of −14.6 km/s. It has a high proper motion, traversing the sky at the rate of 0.765 arcseconds per year.

Mikko Tuomi is a Finnish astronomer from the University of Hertfordshire, most known for his contributions to the discovery of a number of exoplanets, among them the Proxima Centauri b which orbits the closest star to the Sun. Mikko Tuomi was the first to find indications of the existence of Proxima Centauri b in archival observation data. Other exoplanets to whose discovery or study Tuomi has contributed include HD 40307, HD 154857 c, Kapteyn c, Gliese 682 c, HD 154857, Gliese 221, Gliese 581 g and the planetary system orbiting Tau Ceti. He has led the development of new data analysis techniques for distinguishing observations caused by natural activity of the star and those caused by planets orbiting them.

References

  1. Sheyna E. Gifford. High Scorer on the Easy Scale – Gliese 832c and Potential Habitability Astrobiology Magazine (2014).
  2. Robert Wittenmyer at UNSW.edu.au.