Roman pot

Last updated

The Roman pot is the name of a technique (and of the relevant device) used in accelerator physics. Named after its implementation by the CERN-Rome collaboration in the early 1970s, [1] [2] it is an important tool to measure the total cross section of two particle beams in a collider. [3] They are called pots because the detectors are housed in cylindrical vessels. The first generation of Roman pots was purpose-built by the CERN Central Workshops and used in the measurement of the total cross-section of proton-proton inter-actions in the ISR. [4] [5] [6]

Roman pots are located as close to the beamline as possible, to capture the accelerated particles which scatter by very small angles.

Roman pots used at the Large Hadron Collider (LHC)

Roman pots were first used in the TOTEM experiment [7] and later by the ATLAS [8] and the CMS [9] collaborations at the LHC. The figure below shows a detector used on the beamline near IP5 (interaction point 5), the location of the CMS detector. [10] Three of these are used per Roman pot unit. Each is shoved into place to within 10 microns of the beamline. Two detectors are placed above and below the beamline, and a third to the side. These detectors will record any protons that are not travelling precisely along the beamline, and thus record the elastic scattering of the protons. [11] This is used to measure the total elastic cross-section, including Coulomb scattering as well as diffractive scattering (i.e. diffraction because the protons are not point particles, and have an internal structure (i.e. quarks)). Effectively, these are detectors for studying Regge theory. The goal is to search for elastic scattering effects beyond the Standard Model, such as hypothetical "colorless gluons", as well confirming ideas of pomeron exchange, and the possible existence of an odderon.

Odderons were potentially observed only in 2017 by the TOTEM experiment at the LHC. [12] This observation was later confirmed in a joint analysis with the DØ experiment at the Tevatron. [13]

TOTEMs Roman Pots.jpg

The figure below shows a single Roman pot unit, located about 220 meters forward of the IP5 interaction point. The detectors are the bulkiest bits wrapped in insulation.

Totem Roman Pots.jpg

Related Research Articles

<span class="mw-page-title-main">CERN</span> European research centre based in Geneva, Switzerland

The European Organization for Nuclear Research, known as CERN, is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states. Israel, admitted in 2013, is the only non-European full member. CERN is an official United Nations General Assembly observer.

<span class="mw-page-title-main">Tevatron</span> Defunct particle accelerator at Fermilab in Illinois, USA (1983–2011)

The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and is the second highest energy particle collider ever built, after the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.

<span class="mw-page-title-main">Large Hadron Collider</span> Particle accelerator at CERN, Switzerland (LHC)

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

<span class="mw-page-title-main">ATLAS experiment</span> CERN LHC experiment

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.

<span class="mw-page-title-main">H1 (particle detector)</span>

H1 was a particle detector operated at the HERA collider at the German national laboratory DESY in Hamburg. The first studies for the H1 experiment were proposed in 1981. The H1 detector began operating together with HERA in 1992 and took data until 2007. It consisted of several different detector components, measured about 12 m × 15 m × 10 m and weighed 2800 tons. It was one of four detectors along the HERA accelerator.

<span class="mw-page-title-main">Large Electron–Positron Collider</span> Particle accelerator at CERN, Switzerland

The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland.

A collider is a type of particle accelerator that brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.

In physics, the pomeron is a Regge trajectory — a family of particles with increasing spin — postulated in 1961 to explain the slowly rising cross section of hadronic collisions at high energies. It is named after Isaak Pomeranchuk.

<span class="mw-page-title-main">TOTEM experiment</span>

The TOTEM experiment is one of the nine detector experiments at CERN's Large Hadron Collider. The other eight are: ATLAS, ALICE, CMS, LHCb, LHCf, MoEDAL, FASER and SND@LHC. It shares an interaction point with CMS. The detector aims at measurement of total cross section, elastic scattering, and diffraction processes. The primary instrument of the detector is referred to as a Roman pot. In December 2020, the D0 and TOTEM Collaborations made public the odderon discovery based on a purely data driven approach in a CERN and Fermilab approved preprint that was later published in Physical Review Letters. In this experimental observation, the TOTEM proton-proton data in the region of the diffractive minimum and maximum was extrapolated from 13, 8, 7 and 2.76 TeV to 1.96 TeV and compared this to D0 data at 1.96 TeV in the same t-range giving an odderon significance of 3.4 σ. When combined with TOTEM experimental data at 13 TeV at small scattering angles providing an odderon significance of 3.4 - 4.6 σ, the combination resulted in an odderon significance of at least 5.2 σ.

<span class="mw-page-title-main">Intersecting Storage Rings</span> Particle accelerator at CERN, Switzerland

The ISR was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider itself had the capability to produce particles like the J/ψ and the upsilon, as well as observable jet structure; however, the particle detector experiments were not configured to observe events with large momentum transverse to the beamline, leaving these discoveries to be made at other experiments in the mid-1970s. Nevertheless, the construction of the ISR involved many advances in accelerator physics, including the first use of stochastic cooling, and it held the record for luminosity at a hadron collider until surpassed by the Tevatron in 2004.

The High Luminosity Large Hadron Collider is an upgrade to the Large Hadron Collider, operated by the European Organization for Nuclear Research (CERN), located at the French-Swiss border near Geneva. From 2011 to 2020, the project was led by Lucio Rossi. In 2020, the lead role was taken up by Oliver Brüning.

<span class="mw-page-title-main">LHCf experiment</span>

The LHCf is a special-purpose Large Hadron Collider experiment for astroparticle physics, and one of eight detectors in the LHC accelerator at CERN. The other seven are: ATLAS, ALICE, CMS, MoEDAL, TOTEM, LHCb and FASER. LHCf is designed to study the particles generated in the "forward" region of collisions, those almost directly in line with the colliding proton beams. It therefore consists of two detectors, 140 m on either side of the interaction point. Because of this large distance, it can co-exist with a more conventional detector surrounding the interaction point, and shares the interaction point IP1 with the much larger general-purpose ATLAS experiment.

In particle physics, the odderon corresponds to an elusive family of odd-gluon states, dominated by a three-gluon state. When protons collide elastically with protons or with anti-protons at high energies, even or odd numbers of gluons are exchanged. Exchanging an even number of gluons is a crossing-even part of elastic proton–proton and proton–antiproton scattering, while odderon exchange, i.e. exchange of odd number of gluons, corresponds to a crossing-odd term in the elastic scattering amplitude. It took about 48 years to find a definite signal of odderon exchange.

CASTOR is an electromagnetic (EM) and hadronic (HAD) calorimeter of the CMS experiment at CERN. It is based on plates made out of tungsten and quartz layers, positioned around the beam pipe in the very forward region of the CMS, covering the pseudorapidity range 5.1 — 6.55. It is used in collider physics, proton-proton collisions and heavy ion collisions, for example lead collisions. It is designed to search for strangelets and centauro events, kinds of exotic matter in the baryon dense, very forward phase region in lead (Pb) collisions at the particle accelerator LHC, CERN near Geneva.

<span class="mw-page-title-main">David B. Cline</span> American particle physicist

]

<span class="mw-page-title-main">Fixed-target experiment</span>

A fixed-target experiment in particle physics is an experiment in which a beam of accelerated particles is collided with a stationary target. The moving beam consists of charged particles such as electrons or protons and is accelerated to relativistic speed. The fixed target can be a solid block or a liquid or a gaseous medium. These experiments are distinct from the collider-type experiments in which two moving particle beams are accelerated and collided. The famous Rutherford gold foil experiment, performed between 1908 and 1913, was one of the first fixed-target experiments, in which the alpha particles were targeted at a thin gold foil.

<span class="mw-page-title-main">Scattering and Neutrino Detector</span>

The Scattering and Neutrino Detector (SND) at the Large Hadron Collider (LHC), CERN, is an experiment built for the detection of the collider neutrinos. The primary goal of SND is to measure the p+p --> +X process and search for the feebly interacting particles. It will be operational from 2022, during the LHC-Run 3 (2022-2024). SND will be installed in an empty tunnel- TI18 that links the LHC and Super Proton Synchrotron, 480m away from the ATLAS experiment interaction point in the fast forward region and along the beam collision axis.

Geoffrey Hall, is a British particle physicist, currently Professor of Physics at Imperial College London. He is best known for developing radiation and particle detectors and other electronic instruments for use in particle physics experiments, notably the CMS detector in CERN's Large Hadron Collider.

References

  1. Experiments at the ISR. 1971.
  2. "Giuseppe Cocconi (1914 - 2008)". CERN Bulletin. 2008.
  3. Holzer, B. J.; Goddard, B.; Herr, Werner; Muratori, Bruno; Rivkin, L.; Biagini, M. E.; Jowett, J. M.; Hanke, K.; Fischer, W. (2020). "Design and Principles of Synchrotrons and Circular Colliders". In Myers, Stephen; Schopper, Herwig (eds.). Particle Physics Reference Library, Volume 3: Accelerators and Colliders. Cham: Springer Open. pp. 205–294. doi: 10.1007/978-3-030-34245-6_6 . ISBN   978-3-030-34245-6.
  4. Bryant, P. J. (1971). Run 118 - 3 November 1971 - 06.30 to 08.00h, Rings 1 and 2 - 15 GeV/c - Physics beams: Creation of low background conditions while the Roman pots are within 2 mm of the beam. ISR Running-in.
  5. New-style Roman Pots in the ISR. Geneva: CERN. 1980.
  6. Fabjan, Christian; Hübner, Kurt (2017). The Intersecting Storage Rings (ISR): The First Hadron Collider. Advanced Series on Directions in High Energy Physics. Vol. 27. World Scientific. pp. 87–133. Bibcode:2017cern.book...87F. doi: 10.1142/9789814749145_0004 . ISBN   978-981-4749-13-8.
  7. "Roman pots for the LHC". CERN Courier. 1999-03-28. Retrieved 2020-11-25.
  8. "ALFA - Absolute Luminosity For ATLAS". September 2015.
  9. "The LHC as a photon collider". CERN. February 2016.
  10. "CERN | The TOTEM experiment". totem-experiment.web.cern.ch. Retrieved 2020-11-25.
  11. Oriunno, Marco; Deile, Mario; Eggert, Karsten; Lacroix, Jean-Michel; Mathot, Serge Jean; Noschis, Elias Philippe; Perret, Roger; Radermacher, Ernst; Ruggiero, Gennaro (2006). The Roman Pot for LHC.
  12. Martynov, Evgenij; Nicolescu, Basarab (2018). "Did TOTEM experiment discover the Odderon?". Physics Letters B. 778: 414–418. arXiv: 1711.03288 . Bibcode:2018PhLB..778..414M. doi: 10.1016/j.physletb.2018.01.054 .
  13. Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Antchev, G.; Askew, A. (2021). "Odderon Exchange from Elastic Scattering Differences between pp and pp¯ Data at 1.96 TeV and from pp Forward Scattering Measurements". Physical Review Letters. 127 (6): 062003. arXiv: 2012.03981 . Bibcode:2021PhRvL.127f2003A. doi:10.1103/PhysRevLett.127.062003. PMID   34420329. S2CID   227737845.