Odderon

Last updated
Odderon
Composition Odd number of gluons
Family Hadrons
Interactions Strong
SymbolO
Antiparticle Self
Theorized Basarab Nicolescu and Leszek Łukaszuk (October 1973) [1]
Discovered Tamás Csörgő, Tamás Novák, Roman Pasechnik, András Ster and István Szanyi
and TOTEM Collaborations [2]

In particle physics, the odderon corresponds to an elusive family of odd-gluon states, dominated by a three-gluon state. When protons collide elastically with other protons or with anti-protons at high energies, gluons are exchanged. Exchanging an even number of gluons is a crossing-even part of elastic proton–proton and proton–antiproton scattering, while odderon exchange (i.e. exchange of odd number of gluons) corresponds to a crossing-odd term in the elastic scattering amplitude. In turn, the odderon's crossing-odd counterpart is the pomeron.[ clarification needed ]

Contents

It took about 48 years to find a definite signal of odderon exchange. [2]

Description

In elastic collisions, the total kinetic energy of the system is conserved. Thus the identity of the scattered particles is not modified, no excited states and/or new particles are produced. The kinematics of these collisions is governed by the conservation of both energy and momentum.

Data on high-energy elastic proton–proton collisions provided by the TOTEM Collaboration in a teraelectronvolt energy range, together with data from the DØ experiment on elastic proton–antiproton collisions at the Tevatron collider were key ingredients in the discovery of the odderon-exchange. The observed characteristics of the proton–proton collisions did not match the characteristics of the proton–antiproton collisions. As a result, there is an interaction-mediating family of particles (Regge trajectory) that can result in such a deviation in the range of strong interactions.

Discovery

The first paper on the theoretical prediction of possible odderon exchange was published in 1973 by Basarab Nicolescu and Leszek Łukaszuk. [1] The odderon name was coined in 1975 in a paper from the same group (Joynson, D.; Leader, E.; Nicolescu, B. and Lopez, C.) [3]

In December 2020, the DØ and TOTEM Collaborations made public their CERN and Fermilab approved preprint [2] later published in Physical Review Letters in August 2021. [2] The DØ and TOTEM extrapolated TOTEM proton–proton data in the region of the diffractive minimum and maximum from 13, 8, 7 and 2.76 TeV to 1.96 TeV and compared this to DØ proton–antiproton measurement at 1.96 TeV in the same t-range finding an odderon significance of 3.4 σ. TOTEM observed an independent odderon signal at low four-momentum transfers at 13 TeV. When a partial combination of the TOTEM ρ and total cross section measurements is done at 13 TeV, the combined significance ranges between 3.4 and 4.6 σ for the different models. Combining this with the 3.4 σ effect on the extrapolated proton–proton differential cross-sections resulted in an at least 5.2 σ statistical significance. This is the first statistically significant observation of odderon exchange effects by experimental collaborations. [2]

A Hungarian-Swedish scaling analysis introduced a new scaling function and observed, model dependently, that in a limited energy range, that includes the DØ energy of 1.96 TeV and the TOTEM energies of 2.76 and 7 TeV, the elastic proton–proton collisions are within the experimental uncertainties independent of the energy of the collision. [4]

In this model dependently determined domain of validity, the Hungarian-Swedish team utilized a direct data-to-data comparison and showed that energy independent scaling function of elastic proton–proton collisions is significantly different from the scaling function of elastic proton–antiproton collisions, hence providing a statistically significant signal for the exchange of the elusive odderon. The preprint of this analysis was made public in December 2019 and its final form it was published in February 2021. [4]

This paper has been seconded in July 2021 by a theoretical paper of Tamás Csörgő, and István Szanyi, increasing the statistical significance of odderon observation to at least 7.08 σ signal. [5] This paper utilized a previously published theoretical model, the so-called real-extended Bialas-Bzdak model, to extrapolate not only the elastic proton–proton scattering data from the LHC energies to the DØ energy of 1.96 TeV but also to extrapolate the elastic proton–antiproton scattering data from 0.546 and 1.96 TeV to the LHC energies of 2.76 TeV and 7 TeV. Evaluating the proton–proton data with a model increased the uncertainty and decreased the odderon signal from proton–proton scattering data alone, but this decrease was well over-compensated with the ability of the model to evaluate theoretically the proton–antiproton scattering at the LHC energies, leading to an overall increase of the statistical significance from 6.26 to 7.08 σ signal. [5]

Chronology of articles discovering odderon exchange

AuthorsSubmitted for publicationAccepted for publicationPublishedArticle reference
Tamás Csörgő, Tamás Novák, Roman Pasechnik, András Ster, István Szanyi 15 Apr 2020 11 May 2020 16 Jun 2020 EPJ Web of Conferences 235, 06002 (2020)
Tamás Csörgő, Tamás Novák, Roman Pasechnik, András Ster, István Szanyi29 Dec 201912 Jan 202123 Feb 2021 Eur. Phys. J. C81, 180 (2021)
Tamás Csörgő and István Szanyi 6 Aug 2020 25 Jun 202113 Jul 2021 Eur. Phys. J. C81, 611 (2021)
D0 and TOTEM experimental collaborations7 Dec 202010 Jun 20214 Aug 2021 Phys. Rev. Lett. 127, 062003(2021)

See also

Related Research Articles

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one atomic mass unit, are jointly referred to as nucleons (particles present in atomic nuclei).

A collider is a type of particle accelerator that brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.

<span class="mw-page-title-main">Glueball</span> Hypothetical particle composed of gluons

In particle physics, a glueball is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable.

In physics, the pomeron is a Regge trajectory — a family of particles with increasing spin — postulated in 1961 to explain the slowly rising cross section of hadronic collisions at high energies. It is named after Isaak Pomeranchuk.

In quantum physics, Regge theory is the study of the analytic properties of scattering as a function of angular momentum, where the angular momentum is not restricted to be an integer multiple of ħ but is allowed to take any complex value. The nonrelativistic theory was developed by Tullio Regge in 1959.

Hadronization is the process of the formation of hadrons out of quarks and gluons. There are two main branches of hadronization: quark-gluon plasma (QGP) transformation and colour string decay into hadrons. The transformation of quark-gluon plasma into hadrons is studied in lattice QCD numerical simulations, which are explored in relativistic heavy-ion experiments. Quark-gluon plasma hadronization occurred shortly after the Big Bang when the quark–gluon plasma cooled down to the Hagedorn temperature when free quarks and gluons cannot exist. In string breaking new hadrons are forming out of quarks, antiquarks and sometimes gluons, spontaneously created from the vacuum.

<span class="mw-page-title-main">Two-photon physics</span> Branch of particle physics concerning interactions between two photons

Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.

<span class="mw-page-title-main">TOTEM experiment</span>

The TOTEM experiment is one of the nine detector experiments at CERN's Large Hadron Collider. The other eight are: ATLAS, ALICE, CMS, LHCb, LHCf, MoEDAL, FASER and SND@LHC. It shares an interaction point with CMS. The detector aims at measurement of total cross section, elastic scattering, and diffraction processes. The primary instrument of the detector is referred to as a Roman pot. In December 2020, the D0 and TOTEM Collaborations made public the odderon discovery based on a purely data driven approach in a CERN and Fermilab approved preprint that was later published in Physical Review Letters. In this experimental observation, the TOTEM proton-proton data in the region of the diffractive minimum and maximum was extrapolated from 13, 8, 7 and 2.76 TeV to 1.96 TeV and compared this to D0 data at 1.96 TeV in the same t-range giving an odderon significance of 3.4 σ. When combined with TOTEM experimental data at 13 TeV at small scattering angles providing an odderon significance of 3.4 - 4.6 σ, the combination resulted in an odderon significance of at least 5.2 σ.

<span class="mw-page-title-main">Drell–Yan process</span> Process in high-energy hadron–hadron scattering

The Drell–Yan process occurs in high energy hadron–hadron scattering. It takes place when a quark of one hadron and an antiquark of another hadron annihilate, creating a virtual photon or Z boson which then decays into a pair of oppositely-charged leptons. Importantly, the energy of the colliding quark-antiquark pair can be almost entirely transformed into the mass of new particles. This process was first suggested by Sidney Drell and Tung-Mow Yan in 1970 to describe the production of lepton–antilepton pairs in high-energy hadron collisions. Experimentally, this process was first observed by J. H. Christenson et al. in proton–uranium collisions at the Alternating Gradient Synchrotron.

<span class="mw-page-title-main">DØ experiment</span> Particle physics research project (1983–2011)

The DØ experiment was a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments located at the Tevatron Collider at Fermilab in Batavia, Illinois. The Tevatron was the world's highest-energy accelerator from 1983 until 2009, when its energy was surpassed by the Large Hadron Collider. The DØ experiment stopped taking data in 2011, when the Tevatron shut down, but data analysis is still ongoing. The DØ detector is preserved in Fermilab's DØ Assembly Building as part of a historical exhibit for public tours.

In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions.

Color-glass condensate (CGC) is a type of matter theorized to exist in atomic nuclei when they collide at near the speed of light. During such collision, one is sensitive to the gluons that have very small momenta, or more precisely a very small Bjorken scaling variable. The small momenta gluons dominate the description of the collision because their density is very large. This is because a high-momentum gluon is likely to split into smaller momentum gluons. When the gluon density becomes large enough, gluon-gluon recombination puts a limit on how large the gluon density can be. When gluon recombination balances gluon splitting, the density of gluons saturate, producing new and universal properties of hadronic matter. This state of saturated gluon matter is called the color-glass condensate.

The Roman pot is the name of a technique used in accelerator physics. Named after its implementation by the CERN-Rome collaboration in the early 1970s, it is an important tool to measure the total cross section of two particle beams in a collider. They are called pots because the detectors are housed in cylindrical vessels. The first generation of Roman pots was purpose-built by the CERN Central Workshops and used in the measurement of the total cross-section of proton-proton inter-actions in the ISR.

In particle physics phenomenology, chiral color is a speculative model which extends quantum chromodynamics (QCD), the generally accepted theory for the strong interactions of quarks. QCD is a gauge field theory based on a gauge group known as color SU(3)C with an octet of colored gluons acting as the force carriers between a triplet of colored quarks.

<span class="mw-page-title-main">Quark–gluon plasma</span> Phase of quantum chromodynamics (QCD)

Quark–gluon plasma is an interacting localized assembly of quarks and gluons at thermal and chemical (abundance) equilibrium. The word plasma signals that free color charges are allowed. In a 1987 summary, Léon Van Hove pointed out the equivalence of the three terms: quark gluon plasma, quark matter and a new state of matter. Since the temperature is above the Hagedorn temperature—and thus above the scale of light u,d-quark mass—the pressure exhibits the relativistic Stefan-Boltzmann format governed by temperature to the fourth power and many practically massless quark and gluon constituents. It can be said that QGP emerges to be the new phase of strongly interacting matter which manifests its physical properties in terms of nearly free dynamics of practically massless gluons and quarks. Both quarks and gluons must be present in conditions near chemical (yield) equilibrium with their colour charge open for a new state of matter to be referred to as QGP.

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

<span class="mw-page-title-main">Light-front quantization applications</span> Quantization procedure in quantum field theory

The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is a Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere.

<span class="mw-page-title-main">750 GeV diphoton excess</span> 2015 anomaly in the Large Hadron Collider

The 750 GeV diphoton excess in particle physics was an anomaly in data collected at the Large Hadron Collider (LHC) in 2015, which could have been an indication of a new particle or resonance. The anomaly was absent in data collected in 2016, suggesting that the diphoton excess was a statistical fluctuation. In the interval between the December 2015 and August 2016 results, the anomaly generated considerable interest in the scientific community, including about 500 theoretical studies. The hypothetical particle was denoted by the Greek letter Ϝ in the scientific literature, owing to the decay channel in which the anomaly occurred. The data, however, were always less than five standard deviations (sigma) different from that expected if there was no new particle, and, as such, the anomaly never reached the accepted level of statistical significance required to announce a discovery in particle physics. After the August 2016 results, interest in the anomaly sank as it was considered a statistical fluctuation. Indeed, a Bayesian analysis of the anomaly found that whilst data collected in 2015 constituted "substantial" evidence for the digamma on the Jeffreys scale, data collected in 2016 combined with that collected in 2015 was evidence against the digamma.

<span class="mw-page-title-main">Gavin Salam</span> Theoretical particle physicist

Gavin Phillip Salam, is a theoretical particle physicist and a senior research fellow at All Souls College as well as a senior member of staff at CERN in Geneva. His research investigates the strong interaction of Quantum Chromodynamics (QCD), the theory of quarks and gluons. Gavin Salam is not related to Abdus Salam.

Pekka K. Sinervo is an experimental particle physicist who has studied quarks, gluons and vector bosons using high-energy electron and proton collisions. He is a professor of physics at University of Toronto, where he has taught and pursued research since 1990.

References

  1. 1 2 Łukaszuk, L.; Nicolescu, B. (1 October 1973). "A possible interpretation of pp rising total cross-sections". Lettere al Nuovo Cimento. 8 (7): 405–413. doi:10.1007/BF02824484. S2CID   122981407.
  2. 1 2 3 4 5 Abazov, V. M.; et al. (4 August 2021). "Odderon Exchange from Elastic Scattering Differences between pp and ppbar Data at 1.96 TeV and from pp Forward Scattering Measurements". Physical Review Letters. 127 (6): 062003. arXiv: 2012.03981 . Bibcode:2021PhRvL.127f2003A. doi:10.1103/PhysRevLett.127.062003. PMID   34420329. S2CID   227737845.
  3. Joynson, D.; Leader, E.; Nicolescu, B.; Lopez, C. (1 December 1975). "Non-regge and hyper-regge effects in pion–nucleon charge exchange scattering at high energies". Il Nuovo Cimento A. 30 (3): 345–384. Bibcode:1975NCimA..30..345J. doi:10.1007/BF02730293. S2CID   124183973.
  4. 1 2 Csörgő, T.; Novák, T.; Pasechnik, R.; Ster, A.; Szanyi, I. (23 February 2021). "Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies". The European Physical Journal C. 81 (2): 180 https://arxiv.org/abs/1912.11968. Bibcode:2021EPJC...81..180C. doi : 10.1140/epjc/s10052-021-08867-6 S2CID 209500465.
  5. 1 2 Csörgő, T.; Szanyi, I. (13 July 2021). "Observation of Odderon effects at LHC energies: a real extended Bialas–Bzdak model study". The European Physical Journal C. 81 (7): 611. arXiv:2005.14319. Bibcode:2021EPJC...81..611C. doi : 10.1140/epjc/s10052-021-09381-5 S2CID 219124254.

Bibliography