Ronald de Wolf

Last updated
Ronald de Wolf
Born1973
Alma mater University of Amsterdam [1]
Erasmus University Rotterdam [1]
Known for Quantum fingerprinting
Communication complexity
Coding theory
Scientific career
Fields Computer Science, Quantum Computing, Logic
Institutions CWI
University of California, Berkeley
Doctoral advisor Harry Buhrman, Paul Vitanyi [1] [2]

Ronald Michiel de Wolf (born 1973) is a Dutch Computer Scientist, currently a Senior Researcher at Centrum Wiskunde & Informatica (CWI) and a professor at the Institute for Logic, Language and Computation (ILLC) of the University of Amsterdam (UvA).

His research interests are on Quantum computing, Quantum information, Coding theory, and Computational complexity theory.

His scientific contributions include the first exponential separation between one-way quantum and classical communication protocols for a partial Boolean function, [3] and a proof that a locally decodable code (LDC) with 2 classical queries need exponential length. [4] This suggested the use of techniques from quantum computing to prove results in "classical" computer science.

De Wolf and his coauthors received the Best Paper Award at the Annual ACM Symposium on Theory of Computing (STOC) in 2012. [5] For the same article, they also received the 2022 STOC 10-year test of time award [6] and the 2023 Gödel prize. [7]

Publications

Related Research Articles

In computer science, computational learning theory is a subfield of artificial intelligence devoted to studying the design and analysis of machine learning algorithms.

In quantum computing, a quantum algorithm is an algorithm which runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is usually used for those algorithms which seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.

The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory. The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the "P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time.

<span class="mw-page-title-main">Russell Impagliazzo</span> American computer scientist

Russell Graham Impagliazzo is a professor of computer science at the University of California, San Diego, specializing in computational complexity theory.

In computational complexity theory, the PCP theorem states that every decision problem in the NP complexity class has probabilistically checkable proofs of constant query complexity and logarithmic randomness complexity.

Umesh Virkumar Vazirani is an Indian–American academic who is the Roger A. Strauch Professor of Electrical Engineering and Computer Science at the University of California, Berkeley, and the director of the Berkeley Quantum Computation Center. His research interests lie primarily in quantum computing. He is also a co-author of a textbook on algorithms.

In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices. The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: Lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic algorithms. In addition, some lattice problems which are worst-case hard can be used as a basis for extremely secure cryptographic schemes. The use of worst-case hardness in such schemes makes them among the very few schemes that are very likely secure even against quantum computers. For applications in such cryptosystems, lattices over vector space or free modules are generally considered.

The Annual ACM Symposium on Theory of Computing (STOC) is an academic conference in the field of theoretical computer science. STOC has been organized annually since 1969, typically in May or June; the conference is sponsored by the Association for Computing Machinery special interest group SIGACT. Acceptance rate of STOC, averaged from 1970 to 2012, is 31%, with the rate of 29% in 2012.

In computational complexity the decision tree model is the model of computation in which an algorithm is considered to be basically a decision tree, i.e., a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.

Richard Erwin Cleve is a Canadian professor of computer science at the David R. Cheriton School of Computer Science at the University of Waterloo, where he holds the Institute for Quantum Computing Chair in quantum computing, and an associate member of the Perimeter Institute for Theoretical Physics.

Michael Ezra Saks is an American mathematician. He is currently the Department Chair of the Mathematics Department at Rutgers University (2017–) and from 2006 until 2010 was director of the Mathematics Graduate Program at Rutgers University. Saks received his Ph.D. from the Massachusetts Institute of Technology in 1980 after completing his dissertation titled Duality Properties of Finite Set Systems under his advisor Daniel J. Kleitman.

In computational complexity theory, the class QIP is the quantum computing analogue of the classical complexity class IP, which is the set of problems solvable by an interactive proof system with a polynomial-time verifier and one computationally unbounded prover. Informally, IP is the set of languages for which a computationally unbounded prover can convince a polynomial-time verifier to accept when the input is in the language and cannot convince the verifier to accept when the input is not in the language. In other words, the prover and verifier may interact for polynomially many rounds, and if the input is in the language the verifier should accept with probability greater than 2/3, and if the input is not in the language, the verifier should be reject with probability greater than 2/3. In IP, the verifier is like a BPP machine. In QIP, the communication between the prover and verifier is quantum, and the verifier can perform quantum computation. In this case the verifier is like a BQP machine.

<span class="mw-page-title-main">John Watrous (computer scientist)</span> Theoretical computer scientist

John Harrison Watrous is the Technical Director of IBM Quantum Education at IBM and was a professor of computer science at the David R. Cheriton School of Computer Science at the University of Waterloo, a member of the Institute for Quantum Computing, an affiliate member of the Perimeter Institute for Theoretical Physics and a Fellow of the Canadian Institute for Advanced Research. He was a faculty member in the Department of Computer Science at the University of Calgary from 2002 to 2006 where he held a Canada Research Chair in quantum computing.

Ashok K. Chandra was a computer scientist at Microsoft Research in Mountain View, California, United States, where he was a general manager at the Internet Services Research Center. Chandra received his PhD in Computer Science from Stanford University, an MS from University of California, Berkeley, and a BTech from IIT Kanpur. He was previously Director of Database and Distributed Systems at IBM Almaden Research Center.

<span class="mw-page-title-main">Toniann Pitassi</span> Canadian-American computer scientist

Toniann Pitassi is a Canadian-American mathematician and computer scientist specializing in computational complexity theory. She is currently Jeffrey L. and Brenda Bleustein Professor of Engineering at Columbia University and was Bell Research Chair at the University of Toronto.

Andrew MacGregor Childs is an American computer scientist and physicist known for his work on quantum computing. He is currently a professor in the department of computer science and Institute for Advanced Computer Studies at the University of Maryland. He also co-directs the Joint Center for Quantum Information and Computer Science, a partnership between the University of Maryland and the National Institute of Standards and Technology.

Ewin Tang is a computer scientist at the University of Washington. She was named as one of 2019 Science Forbes 30 Under 30 for her work developing algorithms for classical computers to perform calculations that were previously deemed only possible with quantum computers. That research began under the supervision of Scott Aaronson when Tang was only a teenager.

The Hidden Matching Problem is a computation complexity problem that can be solved using quantum protocols: Let be a positive even integer. In the Hidden Matching Problem, Alice is given and Bob is given ( denotes the family of all possible perfect matchings on nodes). Their goal is to output a tuple such that the edge belongs to the matching and .

In algorithmic game theory, a branch of both computer science and economics, a demand oracle is a function that, given a price-vector, returns the demand of an agent. It is used by many algorithms related to pricing and optimization in online market. It is usually contrasted with a value oracle, which is a function that, given a set of items, returns the value assigned to them by an agent.

<span class="mw-page-title-main">Philip N. Klein</span> American computer scientist

Philip N. Klein is an American computer scientist and professor at Brown University. His research focuses on algorithms for optimization problems in graphs. 

References

  1. 1 2 3 4 Prof. dr. R.M. de Wolf, 1973 - at the University of Amsterdam's Album Academicum
  2. Mathematics Genealogy Project
  3. Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. 2007. Exponential separations for one-way quantum communication complexity, with applications to cryptography. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing (STOC '07). ACM, New York, NY, USA, 516-525. DOI: https://doi.org/10.1145/1250790.1250866
  4. Iordanis Kerenidis and Ronald de Wolf. 2003. Exponential lower bound for 2-query locally decodable codes via a quantum argument. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (STOC '03). ACM, New York, NY, USA, 106-115. DOI: https://doi.org/10.1145/780542.780560
  5. Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf. 2012. Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing (STOC '12). ACM, New York, NY, USA, 95-106. DOI: https://doi.org/10.1145/2213977.2213988
  6. "The 2022 STOC Test of Time Awards".
  7. https://eatcs.org/index.php/component/content/article/1-news/2945-2023-05-18-18-41-48