Rotameter

Last updated
Rotameter outline.jpg
TecFluid-CG34-2500 for water flow measurement Techfluid-CG34-2500.jpg
TecFluid-CG34-2500 for water flow measurement
Medical oxygen regulator with rotameter Oxygen piping.png
Medical oxygen regulator with rotameter

A rotameter is a device that measures the volumetric flow rate of fluid in a closed tube. [1]

Contents

It belongs to a class of meters called variable-area flowmeters, which measure flow rate by allowing the cross-sectional area the fluid travels through to vary, causing a measurable effect. [2]

History

The first variable area meter with rotating float was invented by Karl Kueppers (1874–1933) in Aachen in 1908. This is described in the German patent 215225. Felix Meyer founded the company "Deutsche Rotawerke GmbH" in Aachen recognizing the fundamental importance of this invention. They improved this invention with new shapes of the float and of the glass tube. Kueppers invented the special shape for the inside of the glass tube that realized a symmetrical flow scale.

The brand name Rotameter was registered by the British company GEC Elliot automation, Rotameter Co. In many other countries the brand name Rotameter is registered by Rota Yokogawa GmbH & Co. KG in Germany which is now owned by Yokogawa Electric Corp.

Description

A rotameter consists of a tapered tube, typically made of glass with a 'float' (a shaped weight, made either of anodized aluminum or a ceramic), inside that is pushed up by the drag force of the flow and pulled down by gravity. The drag force for a given fluid and float cross section is a function of flow speed squared only, see drag equation. [3]

A higher volumetric flow rate through a given area increases flow speed and drag force, so the float will be pushed upwards. However, as the inside of the rotameter is cone shaped (widens), the area around the float through which the medium flows increases, the flow speed and drag force decrease until there is mechanical equilibrium with the float's weight.

Floats are made in many different shapes, with spheres and ellipsoids being the most common. The float may be diagonally grooved and partially colored so that it rotates axially as the fluid passes. This shows if the float is stuck since it will only rotate if it is free. Readings are usually taken at the top of the widest part of the float; the center for an ellipsoid, or the top for a cylinder. Some manufacturers use a different standard. [3]

The "float" must not float in the fluid: it has to have a higher density than the fluid, otherwise it will float to the top even if there is no flow.

The mechanical nature of the measuring principle provides a flow measurement device that does not require any electrical power. If the tube is made of metal, the float position is transferred to an external indicator via a magnetic coupling. This capability has considerably expanded the range of applications for the variable area flowmeter, since the measurement can observed remotely from the process or used for automatic control. [3]

Advantages

Disadvantages

See also

Related Research Articles

<span class="mw-page-title-main">Anemometer</span> Instrument for measuring wind speed

In meteorology, an anemometer is a device that measures wind speed and direction. It is a common instrument used in weather stations. The earliest known description of an anemometer was by Italian architect and author Leon Battista Alberti (1404–1472) in 1450.

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, sometimes called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is often preferred in scientific usage, whereas the term "specific gravity" is deprecated.

A viscometer is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a special type of viscometer. Viscometers can measure only constant viscosity, that is, viscosity that does not change with flow conditions.

A hydrometer or lactometer is an instrument used for measuring density or relative density of liquids based on the concept of buoyancy. They are typically calibrated and graduated with one or more scales such as specific gravity.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Volumetric flow rate</span> Volume of fluid which passes per unit time

In physics and engineering, in particular fluid dynamics, the volumetric flow rate is the volume of fluid which passes per unit time; usually it is represented by the symbol Q. It contrasts with mass flow rate, which is the other main type of fluid flow rate. In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge.

<span class="mw-page-title-main">Mixing (process engineering)</span> Process of mechanically stirring a heterogeneous mixture to homogenize it

In industrial process engineering, mixing is a unit operation that involves manipulation of a heterogeneous physical system with the intent to make it more homogeneous. Familiar examples include pumping of the water in a swimming pool to homogenize the water temperature, and the stirring of pancake batter to eliminate lumps (deagglomeration).

<span class="mw-page-title-main">Yokogawa Electric</span> Japanese electrical engineering company

Yokogawa Electric Corporation is a Japanese multinational electrical engineering and software company, with businesses based on its measurement, control, and information technologies.

<span class="mw-page-title-main">Rheometer</span> Scientific instrument used to measure fluid flow (rheology)

A rheometer is a laboratory device used to measure the way in which a viscous fluid flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. It measures the rheology of the fluid.

Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers because of gravity whereas most bulk solids pile at an angle of repose to a peak. The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.

<span class="mw-page-title-main">Refractometer</span> Measurement Tool

A refractometer is a laboratory or field device for the measurement of an index of refraction (refractometry). The index of refraction is calculated from the observed refraction angle using Snell's law. For mixtures, the index of refraction then allows to determine the concentration using mixing rules such as the Gladstone–Dale relation and Lorentz–Lorenz equation.

The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:

  1. A vessel that includes (a) primary separation device and/or section, (b) secondary "gravity" settling (separating) section, (c) mist extractor to remove small liquid particles from the gas, (d) gas outlet, (e) liquid settling (separating) section to remove gas or vapor from oil, (f) oil outlet, and (g) water outlet.
  2. Adequate volumetric liquid capacity to handle liquid surges (slugs) from the wells and/or flowlines.
  3. Adequate vessel diameter and height or length to allow most of the liquid to separate from the gas so that the mist extractor will not be flooded.
  4. A means of controlling an oil level in the separator, which usually includes a liquid-level controller and a diaphragm motor valve on the oil outlet.
  5. A back pressure valve on the gas outlet to maintain a steady pressure in the vessel.
  6. Pressure relief devices.
<span class="mw-page-title-main">Positive displacement meter</span>

A positive displacement meter is a type of flow meter that requires fluid to mechanically displace components in the meter in order for flow measurement. Positive displacement (PD) flow meters measure the volumetric flow rate of a moving fluid or gas by dividing the media into fixed, metered volumes. A basic analogy would be holding a bucket below a tap, filling it to a set level, then quickly replacing it with another bucket and timing the rate at which the buckets are filled. With appropriate pressure and temperature compensation, the mass flow rate can be accurately determined.

<span class="mw-page-title-main">Custody transfer</span> Oil and gas industry term for transfer of physical substance from one operator to another

Custody Transfer in the oil and gas industry refers to the transactions involving transporting physical substance from one operator to another. This includes the transferring of raw and refined petroleum between tanks and railway tank cars; onto ships, and other transactions. Custody transfer in fluid measurement is defined as a metering point (location) where the fluid is being measured for sale from one party to another. During custody transfer, accuracy is of great importance to both the company delivering the material and the eventual recipient, when transferring a material.

Sedimentation potential occurs when dispersed particles move under the influence of either gravity or centrifugation in a medium. This motion disrupts the equilibrium symmetry of the particle's double layer. While the particle moves, the ions in the electric double layer lag behind due to the liquid flow. This causes a slight displacement between the surface charge and the electric charge of the diffuse layer. As a result, the moving particle creates a dipole moment. The sum of all of the dipoles generates an electric field which is called sedimentation potential. It can be measured with an open electrical circuit, which is also called sedimentation current.

<span class="mw-page-title-main">Reynolds number</span> Ratio of inertial to viscous forces acting on a liquid

In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.

A Thorpe tube flowmeter, a type of variable-area flowmeter, or a rotameter, is an instrument used to directly measure the flow rate of a gas in medical instruments. It consists of a connection to a gas source, a needle valve opened and closed by turning an attached dial for control of flow rate, a float resting in a clear tapered tube, and an outlet port. It is primarily used in health care institutions during delivery of medical gases, often in conjunction with other devices such as pressure gauges or pressure reducing valves.

Lorentz force velocimetry (LFV) is a noncontact electromagnetic flow measurement technique. LFV is particularly suited for the measurement of velocities in liquid metals like steel or aluminium and is currently under development for metallurgical applications. The measurement of flow velocities in hot and aggressive liquids such as liquid aluminium and molten glass constitutes one of the grand challenges of industrial fluid mechanics. Apart from liquids, LFV can also be used to measure the velocity of solid materials as well as for detection of micro-defects in their structures.

A density meter (densimeter) is a device which measures the density of an object or material. Density is usually abbreviated as either or . Typically, density either has the units of or . The most basic principle of how density is calculated is by the formula:

References

  1. 1 2 3 4 R.C.Baker. Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications. (2016) 790 pag. ISBN   110704586X, ISBN   9781107045866
  2. 1 2 3 Brodkey, Robert S.; Hershey, Harry C. (2003), Transport Phenomena: A Unified Approach, Brodkey Publishing (McGraw Hill), pp. 471–476, ISBN   0-9726635-8-4
  3. 1 2 3 4 Flow R. Miller, Measurement Engineering Handbook. 1168 pag. McGraw-Hill Education; (1996), ISBN   0070423660, ISBN   9780070423664