Russell M. Pitzer

Last updated

Russell Mosher Pitzer (born May 10, 1938) is an American theoretical chemist and educator.

He was born in Berkeley, California and attended public schools in this and the Washington, D.C. area. He received his B.S. in chemistry in 1959 from the California Institute of Technology, his A.M. in physics from Harvard University in 1963, and his Ph.D. in chemical physics from Harvard University in 1963.

Ethane barrier to rotation about the carbon-carbon bond, first accurately calculated by Pitzer and Lipscomb. Lilpscomb-ethane-barrier.png
Ethane barrier to rotation about the carbon-carbon bond, first accurately calculated by Pitzer and Lipscomb.

At Harvard, Pitzer worked with William N. Lipscomb, Jr. in cooperation with the research group of John C. Slater at M.I.T. to develop computer programs to use Slater orbitals to produce self-consistent field (SCF) molecular orbitals.

The ethane barrier (see diagram at right) was first calculated accurately by Pitzer and Lipscomb [1] using Hartree Fock Self-Consistent Field (SCF) theory. Ethane gives a classic, simple example of such a rotational barrier, the minimum energy to produce a 360-degree bond rotation of a molecular substructure. The three hydrogens at each end are free to pinwheel about the central carbon-carbon bond, provided that there is sufficient energy to overcome the barrier of the carbon-hydrogen bonds at each end of the molecule bumping into each other by way of overlap (exchange) repulsion. [2] [3]

Also at Harvard, Pitzer also helped formulate the perturbed Hartree–Fock equations in a form for calculating the effects of external electric and magnetic fields on molecules. [4]

He was a postdoctoral fellow at M.I.T. and a faculty member at Caltech before joining the Chemistry Department at Ohio State University in 1968. He was promoted to Professor in 1979 and served as Department Chair from 1989 to 1994.

His group wrote computer software to enable calculation of molecular energies and other properties. In 1979, with John Yates, he published the first Jahn-Teller-Effect study (on cobalt trifluoride, CoF3) to use a computed energy surface. [5] Relativistic effects could be included. An early application with A. Chang was the first assignment of the visible spectrum of uranocene. [6]

During 1986–87 he served as Acting Associate Director of the Ohio Supercomputer Center, cofounding the center and the Ohio Academic Resources Network. During 2001–03 he served as Interim Director of the Ohio Supercomputer Center. In 2004 he received the Faculty Award For Distinguished University Service. He retired in 2008. [7] [8]

His father was former Stanford University president Kenneth Pitzer and his grandfather, Russell K. Pitzer, founded Pitzer College, one of the seven Claremont Colleges in California. Russell M. Pitzer served as a trustee of Pitzer College from 1988 to 2012, and in 2003 received a Doctor of Humane Letters honorary degree in recognition of this service. In 2018 the Ohio Supercomputer Center named their newly purchased supercomputer Pitzer in honor of his role in founding the center.

Related Research Articles

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion, the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials.

William Lipscomb American chemist (1919–2011)

William Nunn Lipscomb Jr. was a Nobel Prize-winning American inorganic and organic chemist working in nuclear magnetic resonance, theoretical chemistry, boron chemistry, and biochemistry.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

In atomic physics, the effective nuclear charge is the actual amount of positive (nuclear) charge experienced by an electron in a multi-electron atom. The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner layer. The effective nuclear charge experienced by an electron is also called the core charge. It is possible to determine the strength of the nuclear charge by the oxidation number of the atom. Most of the physical and chemical properties of the elements can be explained on the basis of electronic configuration. Consider the behavior of ionization energies in the periodic table. It is known that the magnitude of ionization potential depends upon the following factors:

  1. Size of atom;
  2. The nuclear charge;
  3. The screening effect of the inner shells, and;
  4. The extent to which the outermost electron penetrates into the charge cloud set up by the inner lying electron.
Kenneth Pitzer American chemist

Kenneth Sanborn Pitzer was an American physical and theoretical chemist, educator, and university president. He was described as "one of the most influential physical chemists of his era" whose work "spanned almost all of the important fields of physical chemistry: thermodynamics, statistical mechanics, molecular structure, quantum mechanics, spectroscopy, chemical bonding, relativistic chemical effects, properties of concentrated aqueous salt solutions, kinetics, and conformational analysis."

In chemistry, a molecule experiences strain when its chemical structure undergoes some stress which raises its internal energy in comparison to a strain-free reference compound. The internal energy of a molecule consists of all the energy stored within it. A strained molecule has an additional amount of internal energy which an unstrained molecule does not. This extra internal energy, or strain energy, can be likened to a compressed spring. Much like a compressed spring must be held in place to prevent release of its potential energy, a molecule can be held in an energetically unfavorable conformation by the bonds within that molecule. Without the bonds holding the conformation in place, the strain energy would be released.

The extended Hückel method is a semiempirical quantum chemistry method, developed by Roald Hoffmann since 1963. It is based on the Hückel method but, while the original Hückel method only considers pi orbitals, the extended method also includes the sigma orbitals.

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post–Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

In computational chemistry, post–Hartree–Fock methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Koopmans' theorem states that in closed-shell Hartree–Fock theory (HF), the first ionization energy of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (HOMO). This theorem is named after Tjalling Koopmans, who published this result in 1934.

Hyperconjugation Concept in organic chemistry

In organic chemistry, hyperconjugation refers to the delocalization of electrons with the participation of bonds of primarily σ-character. Usually, hyperconjugation involves the interaction of the electrons in a sigma (σ) orbital with an adjacent unpopulated non-bonding p or antibonding σ* or π* orbitals to give a pair of extended molecular orbitals. However, sometimes, low-lying antibonding σ* orbitals may also interact with filled orbitals of lone pair character (n) in what is termed negative hyperconjugation. Increased electron delocalization associated with hyperconjugation increases the stability of the system. In particular, the new orbital with bonding character is stabilized, resulting in an overall stabilization of the molecule. Only electrons in bonds that are in the β position can have this sort of direct stabilizing effect — donating from a sigma bond on an atom to an orbital in another atom directly attached to it. However, extended versions of hyperconjugation can be important as well. The Baker–Nathan effect, sometimes used synonymously for hyperconjugation, is a specific application of it to certain chemical reactions or types of structures.

Restricted open-shell Hartree–Fock (ROHF) is a variant of Hartree–Fock method for open shell molecules. It uses doubly occupied molecular orbitals as far as possible and then singly occupied orbitals for the unpaired electrons. This is the simple picture for open shell molecules but it is difficult to implement. The foundations of the ROHF method were first formulated by Clemens C. J. Roothaan in a celebrated paper and then extended by various authors, see e.g. for in-depth discussions.

The Davidson correction is an energy correction often applied in calculations using the method of truncated configuration interaction, which is one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry. It was introduced by Ernest R. Davidson.

Spartan (chemistry software)

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

Uranocene, U(C8H8)2, is an organouranium compound composed of a uranium atom sandwiched between two cyclooctatetraenide rings. It was one of the first organoactinide compounds to be synthesized. It is a green air-sensitive solid that dissolves in organic solvents. Uranocene, a member of the "actinocenes," a group of metallocenes incorporating elements from the actinide series. It is the most studied bis[8]annulene-metal system, although it has no known practical applications.

The polarizable continuum model (PCM) is a commonly used method in computational chemistry to model solvation effects. If it were necessary to consider each solvent molecule as a separate molecule, the computational cost of modeling a solvent-mediated chemical reaction would grow prohibitively high. Modeling the solvent as a polarizable continuum, rather than individual molecules, makes ab initio computation feasible. Two types of PCMs have been popularly used: the dielectric PCM (D-PCM) in which the continuum is polarizable and the conductor-like PCM (C-PCM) in which the continuum is conductor-like similar to COSMO Solvation Model.

Python-based Simulations of Chemistry Framework (PySCF) is an ab initio computational chemistry program natively implemented in Python program language. The package aims to provide a simple, light-weight and efficient platform for quantum chemistry code developing and calculation. It provides various functions to do the Hartree–Fock, MP2, density functional theory, MCSCF, coupled cluster theory at non-relativistic level and 4-component relativistic Hartree–Fock theory. Although most functions are written in Python, the computation critical modules are intensively optimized in C. As a result, the package works as efficient as other C/Fortran-based quantum chemistry program. PySCF is developed by Dr. Qiming Sun. PySCF2.0 is the latest version of the program.

Symmetry-adapted perturbation theory or SAPT is a methodology in electronic structure theory developed to describe non-covalent interactions between atoms and/or molecules. SAPT is a member of the family of methods known as energy decomposition analysis (EDA). Most EDA methods decompose a total interaction energy that is computed via a supermolecular approach, such that:

References

  1. Pitzer, RM and Lipscomb, WN, "Calculation of the Barrier to Internal Rotation in Ethane", J. Chem. Phys., 39, 1995–2004 (1963)
  2. Pitzer RM, "The barrier to internal rotation in ethane". Accts. Chem. Res. 16, 201-210 (1983)
  3. Schaefer III, Henry F. (1972). The Electronic Structure of Atoms and Molecules. Reading, Massachusetts: Addison-Wesley. pp. 398–401.
  4. Stevens, RM, Pitzer, RM, and Lipscomb, WN. Perturbed Hartree–Fock Calculations. I. Magnetic Susceptibility and Shielding in the LiH Molecule. J. Chem. Phys. 38, 550-560 (1963).
  5. Yates JM and Pitzer, RM, Molecular and electronic structures of transition metal trifluorides". J. Chem. Phys. 70, 4049-4055 (1979)
  6. Chang AHH and Pitzer RM, "Electronic Structure and Spectra of Uranocene". "J. Am. Chem. Soc., 2500-2507 (1989)
  7. Shavitt, Isaiah (2009). "Tribute to Russell M. Pitzer". J. Phys. Chem. A. 113 (45, Russell M. Pitzer Festschrift): 12339–12341. Bibcode:2009JPCA..11312339S. doi:10.1021/jp9085393. PMID   19888767.
  8. Pitzer bio on OSUChem website