SM4All

Last updated

Smart hoMes for All (SM4All) is an international scientific research project funded by the European Community. It started on September 1, 2008, and will end on August 31, 2011. The SM4All project aims at studying and developing an innovative middleware platform for inter-working of smart embedded services in immersive and personcentric environments, through the use of composability and semantic techniques, in order to guarantee dynamicity, dependability and scalability, while preserving the privacy and security of the platform and its users. This is applied to the challenging scenario of private/home/building in presence of users with different abilities and needs (e.g., young able bodied aged and disabled). [1]

Contents

Project partners

Technical approaches

In the design of the SM4All platform, there will be a specific focus on ontologies for describing service capabilities, to be used for obtaining the dynamic configuration and composition of the services, while preserving the privacy of the users. Within this project an innovative middleware platform for inter-working of smart embedded services by leveraging on peer-to-peer (P2P) technologies will be investigated. In particular, in the SM4All project, P2P, service orientation and context-awareness are merged in novel ways in order to define general reference architecture for embedded middleware targeted to immersive scenarios, among which the domotics and home-care have been selected as showcases. [2]

P2P systems (P2P) have become a popular technique to design large-scale distributed applications in unmanaged inter-domain settings, such as file sharing or chat systems, thanks to their capabilities to self-organize and evenly split the load among peers. [3] The platform is inherently scalable and able to resist to devices’ churn and failures, while preserving the privacy of its human users as well as the security of the whole environment. The embedded systems are specialized computers used to control equipment such as the smart homes. [1] To enable interoperation among heterogeneous devices and to provide a service-oriented basis, the project considers XML based protocols such as Web services and Universal Plug and Play (UPnP). [4]

For example, a woman wants to take a bath. She enters this goal into the computer. Something happens then: The temperature in the bathroom will rise. The water runs in the bathtub with the preferred temperature. The cupboard opens to offer towels. If the woman is disabled, her nurse will be informed by the system.

In SM4All, the focus is on the process-oriented composition of stateful services. The idea is that a triggering condition in the home or a desire of the user can trigger the execution of a complex process. The process is defined in the moment that it needs to be executed. It automatically composes services available on home devices and appliances. The execution of the process thus depends on the context of the home, of its inhabitant and the available services. To achieve this it is necessary to identify the home context, to discover available devices and services and to compose them at execution time. In the SM4All project we consider Automated planning and scheduling approaches for the composition such as the "Roman Model" [5] and the "Barbarian" constraint based approach. [6]

Two techniques adopted in the SM4All project are:

Brain Computer Interface for Virtual-Reality Control
An electroencephalogram (EEG) based brain-computer interface (BCI) was connected with a virtual reality system in order to control a smart home application. Therefore, special control masks were developed which allowed using the P300 component of the EEG as input signal for the BCI system. Control commands for switching TV channels, for opening and closing doors and windows, for navigation and conversation were realized. Experiments with 12 subjects were made to investigate the speed and accuracy that can be achieved if several hundred of commands are used to control the smart home environment. The study clearly shows that such a BCI system can be used for smart home control. The Virtual Reality approach is a very cost-effective way for testing the smart home environment together with the BCI system. [7]
Service Composition
Sensors and devices collaborate one another as service providing and requesting nodes of a network. A service can be a purely information one (e.g., providing the temperature in a room) or a state changing one (closing all the lights in a room). Atomic services are then amenable to discovery and composition, enabling the home to perform complex tasks. The user can than express a goal, such as that of possibly according to some optimality measure. For instance the user may want to take a bath. The goal will be translated into a process invoking various services (turning on the heater in the bathroom, the lights, putting an alarm in the living room, checking that there is hot water available, etc.). Notice that the same goal can take different execution forms in different homes or in different conditions (e.g., the alarm in the living room is not available, but the goal of taking a bath is still satisfied).

Related Research Articles

<span class="mw-page-title-main">Software</span> Non-tangible executable component of a computer

Software is a set of computer programs and associated documentation and data. This is in contrast to hardware, from which the system is built and which actually performs the work.

Ubiquitous computing is a concept in software engineering, hardware engineering and computer science where computing is made to appear anytime and everywhere. In contrast to desktop computing, ubiquitous computing can occur using any device, in any location, and in any format. A user interacts with the computer, which can exist in many different forms, including laptop computers, tablets, smart phones and terminals in everyday objects such as a refrigerator or a pair of glasses. The underlying technologies to support ubiquitous computing include Internet, advanced middleware, operating system, mobile code, sensors, microprocessors, new I/O and user interfaces, computer networks, mobile protocols, location and positioning, and new materials.

Middleware in the context of distributed applications is software that provides services beyond those provided by the operating system to enable the various components of a distributed system to communicate and manage data. Middleware supports and simplifies complex distributed applications. It includes web servers, application servers, messaging and similar tools that support application development and delivery. Middleware is especially integral to modern information technology based on XML, SOAP, Web services, and service-oriented architecture.

<span class="mw-page-title-main">VxWorks</span> Real-time operating system

VxWorks is a real-time operating system developed as proprietary software by Wind River Systems, a subsidiary of Aptiv. First released in 1987, VxWorks is designed for use in embedded systems requiring real-time, deterministic performance and, in many cases, safety and security certification for industries such as aerospace, defense, medical devices, industrial equipment, robotics, energy, transportation, network infrastructure, automotive, and consumer electronics.

<span class="mw-page-title-main">Home automation</span> Building automation for a home

Home automation or domotics is building automation for a home. A home automation system will monitor and/or control home attributes such as lighting, climate, entertainment systems, and appliances. It may also include home security such as access control and alarm systems.

Windows Embedded Compact, formerly Windows Embedded CE, Windows Powered and Windows CE, is a discontinued operating system subfamily developed by Microsoft as part of its Windows Embedded family of products.

<span class="mw-page-title-main">Smart device</span> Type of electronic device

A smart device is an electronic device, generally connected to other devices or networks via different wireless protocols that can operate to some extent interactively and autonomously. Several notable types of smart devices are smartphones, smart speakers, smart cars, smart thermostats, smart doorbells, smart locks, smart refrigerators, phablets and tablets, smartwatches, smart bands, smart keychains, smart glasses, and many others. The term can also refer to a device that exhibits some properties of ubiquitous computing, including—although not necessarily—machine learning.

Java Card is a software technology that allows Java-based applications (applets) to be run securely on smart cards and more generally on similar secure small memory footprint devices which are called "secure elements" (SE). Today, a Secure Element is not limited to its smart cards and other removable cryptographic tokens form factors; embedded SEs soldered onto a device board and new security designs embedded into general purpose chips are also widely used. Java Card addresses this hardware fragmentation and specificities while retaining code portability brought forward by Java.

<span class="mw-page-title-main">Ambient intelligence</span>

In computing, ambient intelligence (AmI) refers to electronic environments that are sensitive and responsive to the presence of people. Ambient intelligence is a projection on the future of consumer electronics, telecommunications and computing originally developed in the late 1990s by Eli Zelkha and his team at Palo Alto Ventures for the time frame 2010–2020. This concept is intended to enable devices to work in concert with people in carrying out their everyday life activities, tasks, and rituals, in an intuitive way by using information and intelligence that is hidden in the network connecting these devices. It is theorized that as these devices grow smaller, more connected and more integrated into our environment, the technological framework behind them would disappear into our surroundings until only the user interface remains perceivable by users.

Smart environments link computers and other smart devices to everyday settings and tasks. Smart environments include smart homes, smart cities and smart manufacturing.

Intelligent Environments (IE) are spaces with embedded systems and information and communication technologies creating interactive spaces that bring computation into the physical world and enhance occupants experiences. "Intelligent environments are spaces in which computation is seamlessly used to enhance ordinary activity. One of the driving forces behind the emerging interest in highly interactive environments is to make computers not only genuine user-friendly but also essentially invisible to the user".

<span class="mw-page-title-main">Immersion (virtual reality)</span> Perception of being physically present in a non-physical world

Immersion into virtual reality (VR) is a perception of being physically present in a non-physical world. The perception is created by surrounding the user of the VR system in images, sound or other stimuli that provide an engrossing total environment.

The Internet of things (IoT) describes physical objects with sensors, processing ability, software and other technologies that connect and exchange data with other devices and systems over the Internet or other communications networks. Internet of things has been considered a misnomer because devices do not need to be connected to the public internet, they only need to be connected to a network, and be individually addressable.

<span class="mw-page-title-main">Cloud computing</span> Form of shared Internet-based computing

Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. Large clouds often have functions distributed over multiple locations, each of which is a data center. Cloud computing relies on sharing of resources to achieve coherence and typically uses a pay-as-you-go model, which can help in reducing capital expenses but may also lead to unexpected operating expenses for users.

Techila Distributed Computing Engine is a commercial grid computing software product. It speeds up simulation, analysis and other computational applications by enabling scalability across the IT resources in user's on-premises data center and in the user's own cloud account. Techila Distributed Computing Engine is developed and licensed by Techila Technologies Ltd, a privately held company headquartered in Tampere, Finland. The product is also available as an on-demand solution in Google Cloud Launcher, the online marketplace created and operated by Google. According to IDC, the solution enables organizations to create HPC infrastructure without the major capital investments and operating expenses required by new HPC hardware.

<span class="mw-page-title-main">PrimeSense</span> Former Israeli company

PrimeSense was an Israeli 3D sensing company based in Tel Aviv. PrimeSense had offices in Israel, North America, Japan, Singapore, Korea, China and Taiwan. PrimeSense was bought by Apple Inc. for $360 million on November 24, 2013.

intendiX is a commercial brain-computer interface (BCI) environment. It is a personal BCI that anyone can use without technical training or outside support at home or in a hospital. Users can control any smart home device such as a television, music player, air conditioner and light. intendiX can control other devices as well, such as mobile robots or games.

A trusted execution environment (TEE) is a secure area of a main processor. It guarantees code and data loaded inside to be protected with respect to confidentiality and integrity. Data integrity prevents unauthorized entities from outside the TEE from altering data, while code integrity prevents code in the TEE from being replaced or modified by unauthorized entities, which may also be the computer owner itself as in certain DRM schemes described in SGX. This is done by implementing unique, immutable, and confidential architectural security such as Intel Software Guard Extensions which offers hardware-based memory encryption that isolates specific application code and data in memory. Intel SGX allows user-level code to allocate private regions of memory, called enclaves, which are designed to be protected from processes running at higher privilege levels. A TEE as an isolated execution environment provides security features such as isolated execution, integrity of applications executing with the TEE, along with confidentiality of their assets. In general terms, the TEE offers an execution space that provides a higher level of security for trusted applications running on the device than a rich operating system (OS) and more functionality than a 'secure element' (SE).

<span class="mw-page-title-main">Intel Management Engine</span> Autonomous computer subsystem

The Intel Management Engine (ME), also known as the Intel Manageability Engine, is an autonomous subsystem that has been incorporated in virtually all of Intel's processor chipsets since 2008. It is located in the Platform Controller Hub of modern Intel motherboards.

<span class="mw-page-title-main">Home Assistant</span> Home automation software

Home Assistant is free and open-source software for home automation designed to be a central control system for smart home devices with a focus on local control and privacy. It can be accessed through a web-based user interface by using companion apps for Android and iOS, or by voice commands via a supported virtual assistant such as Google Assistant or Amazon Alexa.

References

  1. 1 2 Catarci, T. et al. (2007). Smart Homes for All: Collaborating Services in a for-All Architecture for Domotics. CollaborateCom 2007. New York, USA
  2. CORDIS RTD-PROJECTS/©European Communities (2009): Smart homes for all; an embedded middleware platform for pervasive and immersive environments for-all (SM4All).Seventh Framework Programme (FP7)
  3. Baldoni, R. (2009). Dynamic quorums for DHT-based enterprise infrastructures, Journal of Parallel and Distributed Computing. Volume 68, Issue 9, September 2008, Pages 1235–1249
  4. Aiello, M. and S. Dustdar. Are our Homes Ready for Services? A Domotic Infrastructure based on the Web Service Stack (2008) Pervasive and Mobile Computing, 4(4):506-525.
  5. Calvanese, D. et al. (2008): Automatic Service Composition and Synthesis: the Roman Model. Bulletin of the Technical Committee on Data Engineering. IEEE Computer Society Vol31 No.3. p.18ff
  6. Lazovik, A., M. Aiello, and M. Papazoglou, Planning and monitoring the execution of web service requests. (2006) Journal on Digital Libraries Springer, 6(3):235-246.
  7. Guger, C. et al. (2008) Control of a Smart Home with a Brain-Computer Interface. Proc. 3rd BCI workshop at University of Technology Graz