SPRY4-IT1 is a long non-coding RNA which is located within an intron of the SPRY4 gene. Its expression is upregulated in melanoma cells, where it is expressed in the cytoplasm. Removal of its expression by RNAi causes defects in cell-growth and differentiation and increased rates of apoptosis, suggesting that it may have a role in melanoma development. [1]
A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-coding RNAs include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and the long ncRNAs such as Xist and HOTAIR.
Baculoviral IAP repeat-containing protein 7 is a protein that in humans is encoded by the BIRC7 gene.
A metastasis suppressor is a protein that acts to slow or prevent metastases from spreading in the body of an organism with cancer. Metastasis is one of the most lethal cancer processes. This process is responsible for about ninety percent of human cancer deaths. Proteins that act to slow or prevent metastases are different from those that act to suppress tumor growth. Genes for about a dozen such proteins are known in humans and other animals.
Long non-coding RNAs are a type of RNA, generally defined as transcripts more than 200 nucleotides that are not translated into protein. This arbitrary limit distinguishes long ncRNAs from small non-coding RNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. Given that some lncRNAs have been reported to have the potential to encode small proteins or micro-peptides, the latest definition of lncRNA is a class of RNA molecules of over 200 nucleotides that have no or limited coding capacity. Long intervening/intergenic noncoding RNAs (lincRNAs) are sequences of lncRNA which do not overlap protein-coding genes.
MALAT1-associated small cytoplasmic RNA, also known as mascRNA, is a non-coding RNA found in the cytosol. This is a small RNA, roughly 53–61 nucleotides in length, that is processed from a much longer ncRNA called MALAT1 by an enzyme called RNase P. This RNA is expressed in many different human tissues, is highly conserved by evolution and shares a remarkable similarity to tRNA which is also produced by RNase P, yet this RNA is not aminoacylated in HeLa cells. The primary transcript, MALAT1, appears to be upregulated in several malignant cancers. Another small RNA that is homologous to mascRNA, called menRNA, is processed from another long ncRNA called MEN beta.
ZNF703 is a gene which has been linked with the development of breast cancers. ZNF703 is contained within the NET/N1z family responsible for regulation of transcription essential for developmental growth especially in the hindbrain. Normal functions performed by ZNF703 include adhesion, movement and proliferation of cells. ZNF703 directly accumulates histone deacetylases at gene promoter regions but does not bind to functional DNA.
MIAT, also known as RNCR2 or Gomafu, is a long non-coding RNA. Single nucleotide polymorphisms (SNPs) in MIAT are associated with a risk of myocardial infarction. It is expressed in neurons, and located in the nucleus. It plays a role in the regulation of retinal cell fate specification. Crea and collaborators have shown that MIAT is highly up-regulated in aggressive prostate cancer samples, raising the possibility that this gene plays a role in cancer progression.
TUG1 is a long non-coding RNA expressed in the retina and in the brain. It was first identified in a screen for genes upregulated by in developing retinal cells in response to taurine. It is required for the normal development of photoreceptors in the retina.
Prostate-specific transcript 1 , also known as PCGEM1, is a long non-coding RNA gene. In humans, it is located on chromosome 2q32. It is over-expressed in prostate cancer. In a study of prostate tumours from 88 men, levels of PCGEM1 were found to be higher in prostate cancer cells in African-American men than in Caucasian-American men. The mortality rate of prostate cancer is highest in African-American men.
In molecular biology, Highly Up-regulated in Liver Cancer , also known as HULC, is a long non-coding RNA. It was first identified in hepatocellular carcinoma, and is also expressed in colorectal carcinomas that metastasise to the liver. It may have a role in the post-transcriptional regulation of gene expression. It downregulates the expression of several microRNAs, including miR-372. Expression of HULC is upregulated by CREB, there is a CREB-binding site in the promoter of HULC. miR-372 represses translation of the kinase PRKACB, so downregulation of miR-372 leads to increased levels of PRKACB. PRKACB activates CREB by phosphorylation, therefore leading to increased expression of HULC.
In molecular biology, FAS antisense RNA , also known as FAS-AS1 or SAF, is a long non-coding RNA. In humans it is located on chromosome 10. In humans it is transcribed from the opposite strand of intron 1 of the FAS gene. It may regulate the expression of some isoforms of FAS. It may also play a role in the regulation of FAS-mediated apoptosis. Recently it has been shown be sehgal et al. that the alternative splicing of Fas in lymphomas is tightly regulated by a long-noncoding RNA corresponding to an antisense transcript of Fas (FAS-AS1). Levels of FAS-AS1 correlate inversely with production of sFas, and FAS-AS1 binding to the RBM5 inhibits RBM5-mediated exon 6 skipping. EZH2, often mutated or overexpressed in lymphomas, hyper-methylates the FAS-AS1 promoter and represses the FAS-AS1 expression. EZH2-mediated repression of FAS-AS1 promoter can be released by DZNeP or overcome by ectopic expression of FAS-AS1, both of which increase levels of FAS-AS1 and correspondingly decrease expression of sFas. Treatment with Bruton's tyrosine kinase inhibitor or EZH2 knockdown decreases the levels of EZH2, RBM5 and sFas, thereby enhancing Fas-mediated apoptosis. This is the first report showing functional regulation of Fas repression by its antisense RNA. Our results reveal new therapeutic targets in lymphomas and provide a rationale for the use of EZH2 inhibitors or ibrutinib in combination with chemotherapeutic agents that recruit Fas for effective cell killing.
miR-224 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer.
miR-214 is a vertebrate-specific family of microRNA precursors. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer. This sequence then associates with RISC which effects RNA interference.
HOXA11-AS lncRNA is a long non-coding RNA from the antisense strand in the homeobox A. The HOX gene contains four clusters. The sense strand of the HOXA gene codes for proteins. Alternative names for HOXA11-AS lncRNA are: HOXA-AS5, HOXA11S, HOXA11-AS1, HOXA11AS, or NCRNA00076. This gene is 3,885 nucleotides long and resides at chromosome 7 (7p15.2) and is transcribed from an independent gene promoter. Being a lncRNA, it is longer than 200 nucleotides in length, in contrast to regular non-coding RNAs.
In molecular biology, competing endogenous RNAs regulate other RNA transcripts by competing for shared microRNAs (miRNAs). Models for ceRNA regulation describe how changes in the expression of one or multiple miRNA targets alter the number of unbound miRNAs and lead to observable changes in miRNA activity - i.e., the abundance of other miRNA targets. Models of ceRNA regulation differ greatly. Some describe the kinetics of target-miRNA-target interactions, where changes in the expression of one target species sequester one miRNA species and lead to changes in the dysregulation of the other target species. Others attempt to model more realistic cellular scenarios, where multiple RNA targets are affecting multiple miRNAs and where each target pair is co-regulated by multiple miRNA species. Some models focus on mRNA 3' UTRs as targets, and others consider long non-coding RNA targets as well. It's evident that our molecular-biochemical understanding of ceRNA regulation remains incomplete.
Melanoma is a rare but aggressive malignant cancer that originates from melanocytes. These melanocytes are cells found in the basal layer of the epidermis that produce melanin under the control of melanocyte-stimulating hormone. Despite the fact that melanoma represents only a small number of all skin cancers, it is the cause of more than 50% of cancer-related deaths. The high metastatic qualities and death rate, and also its prevalence among people of younger ages have caused melanoma to become a highly researched malignant cancer. Epigenetic modifications are suspected to influence the emergence of many types of cancer-related diseases, and are also suspected to have a role in the development of melanoma.
BRAF-activated non-protein coding RNA is a noncoding RNA that in humans is encoded by the BANCR gene. Long non-coding RNAs (lncRNAs) are involved in the intricate network of cancer and contribute significantly to tumorigenesis and progression. BRAF activated non-coding RNA (BANCR), a 693-bp four-exon transcript, was first identified in 2012 as an oncogenic long non-coding RNA in BRAFV600E melanomas cells and was found to be associated with melanoma cell migration. Apart from melanoma, growing evidence has implicated BANCR in the development and progression of a variety of other human malignancies, including retinoblastoma, lung cancer, and gastric cancer, since its discovery. The pattern of expression of BANCR varies according to the kind of cancer, acting as either a tumour suppressor or an accelerator. Functional BANCR may be a useful biomarker for cancer diagnosis and prognosis assessment. BANCR-targeted therapy may also prove to be a promising new treatment option for human cancers.
Small nucleolar RNA host gene 1 is a non-protein coding RNA that in humans is encoded by the SNHG1 gene.
MIR22HG, also known as C17orf91, MGC14376, MIRN22, hsa-mir-22, and miR-22 is a human gene that encodes a noncoding RNA (ncRNA).This RNA molecule is not translated into a protein but nonetheless may have important functions.