SRG1 RNA

Last updated
SRG1
Srg1.png
Conserved secondary structure of SRG1 RNA
Identifiers
SymbolSRG1
Rfam RF01765
Other data
RNA type Gene; Cis-reg;
Domain(s) Saccharomyces
PDB structures PDBe

SRG1 RNA (SER3 regulatory gene 1) is a non-coding RNA which represses the expression of SER3 (YER081W). [1] [2] [3] SER3 is a gene which codes for a phosphoglycerate dehydrogenase involved in the biosynthesis of serine. [4] SRG1 represses SER3 expression via transcription interference, and in that respect is the first intergenic transcript of its kind. [1]

Contents

SRG1 was identified when chromatin immunoprecipitation (ChIP) assays showed that in Saccharomyces cerevisiae , even when SER3 was being repressed, TATA-binding protein and RNA Polymerase II were still bound to the SER3 DNA in such a way that should have caused active transcription. [1] Further analysis found a second TATA box 558 bp upstream of SER3. A bioinformatic scan identified this same TATA box element in related Saccharomyces. [5] SRG1 has been found to be cis-acting, it had no repressive effect when in trans. [1]

SRG1 RNA is unrelated to Senescence Related Gene 1 (SRG1), a protein-coding gene found in Arabidopsis thaliana , [6] and is also distinct from Stress Response Gene 1 (SRG1) found in Medicago sativa . [7] [8]

Related Research Articles

<span class="mw-page-title-main">Histone</span> Family proteins package and order the DNA into structural units called nucleosomes.

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Promoter (genetics)</span> Region of DNA encouraging transcription

In genetics, a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter. The RNA transcript may encode a protein (mRNA), or can have a function in and of itself, such as tRNA or rRNA. Promoters are located near the transcription start sites of genes, upstream on the DNA . Promoters can be about 100–1000 base pairs long, the sequence of which is highly dependent on the gene and product of transcription, type or class of RNA polymerase recruited to the site, and species of organism.

In molecular biology, the TATA box is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. The bacterial homolog of the TATA box is called the Pribnow box which has a shorter consensus sequence.

RNA polymerase 1 is, in higher eukaryotes, the polymerase that only transcribes ribosomal RNA, a type of RNA that accounts for over 50% of the total RNA synthesized in a cell.

In eukaryote cells, RNA polymerase III is a protein that transcribes DNA to synthesize 5S ribosomal RNA, tRNA, and other small RNAs.

<span class="mw-page-title-main">TATA-binding protein</span> Protein-coding gene in the species Homo sapiens

The TATA-binding protein (TBP) is a general transcription factor that binds specifically to a DNA sequence called the TATA box. This DNA sequence is found about 30 base pairs upstream of the transcription start site in some eukaryotic gene promoters.

<span class="mw-page-title-main">HDAC4</span>

Histone deacetylase 4, also known as HDAC4, is a protein that in humans is encoded by the HDAC4 gene.

<span class="mw-page-title-main">SUPT4H1</span> Protein-coding gene in the species Homo sapiens

Transcription elongation factor SPT4 is a protein that in humans is encoded by the SUPT4H1 gene.

<span class="mw-page-title-main">DRAP1</span> Protein-coding gene in the species Homo sapiens

Dr1-associated corepressor is a protein that in humans is encoded by the DRAP1 gene.

<span class="mw-page-title-main">CNOT7</span> Protein-coding gene in the species Homo sapiens

CCR4-NOT transcription complex subunit 7 is a protein that in humans is encoded by the CNOT7 gene. It is a subunit of the CCR4-Not deadenylase complex.

<span class="mw-page-title-main">MED31</span> Protein-coding gene in the species Homo sapiens

Mediator of RNA polymerase II transcription subunit 31 is a protein in humans encoded by the MED31 gene. It represents subunit Med31 of the Mediator complex. The family contains the Saccharomyces cerevisiae SOH1 homologues. SOH1 is responsible for the repression of temperature sensitive growth of the HPR1 mutant and has been found to be a component of the RNA polymerase II transcription complex. SOH1 not only interacts with factors involved in DNA repair, but transcription as well. Thus, the SOH1 protein may serve to couple these two processes.

<span class="mw-page-title-main">MAF1</span> Protein-coding gene in the species Homo sapiens

Repressor of RNA polymerase III transcription MAF1 homolog is a protein that in humans is encoded by the MAF1 gene.

FACT is a heterodimeric protein complex that affects eukaryotic RNA polymerase II transcription elongation both in vitro and in vivo. It was discovered in 1998 as a factor purified from human cells that was essential for productive, in vitro Pol II transcription on a chromatinized DNA template.

G1/S-specific cyclin Cln3 is a protein that is encoded by the CLN3 gene. The Cln3 protein is a budding yeast G1 cyclin that controls the timing of Start, the point of commitment to a mitotic cell cycle. It is an upstream regulator of the other G1 cyclins, and it is thought to be the key regulator linking cell growth to cell cycle progression. It is a 65 kD, unstable protein; like other cyclins, it functions by binding and activating cyclin-dependent kinase (CDK).

An upstream activating sequence or upstream activation sequence (UAS) is a cis-acting regulatory sequence. It is distinct from the promoter and increases the expression of a neighbouring gene. Due to its essential role in activating transcription, the upstream activating sequence is often considered to be analogous to the function of the enhancer in multicellular eukaryotes. Upstream activation sequences are a crucial part of induction, enhancing the expression of the protein of interest through increased transcriptional activity. The upstream activation sequence is found adjacently upstream to a minimal promoter and serves as a binding site for transactivators. If the transcriptional transactivator does not bind to the UAS in the proper orientation then transcription cannot begin. To further understand the function of an upstream activation sequence, it is beneficial to see its role in the cascade of events that lead to transcription activation. The pathway begins when activators bind to their target at the UAS recruiting a mediator. A TATA-binding protein subunit of a transcription factor then binds to the TATA box, recruiting additional transcription factors. The mediator then recruits RNA polymerase II to the pre-initiation complex. Once initiated, RNA polymerase II is released from the complex and transcription begins.

Cryptic unstable transcripts (CUTs) are a subset of non-coding RNAs (ncRNAs) that are produced from intergenic and intragenic regions. CUTs were first observed in S. cerevisiae yeast models and are found in most eukaryotes. Some basic characteristics of CUTs include a length of around 200–800 base pairs, a 5' cap, poly-adenylated tail, and rapid degradation due to the combined activity of poly-adenylating polymerases and exosome complexes. CUT transcription occurs through RNA Polymerase II and initiates from nucleosome-depleted regions, often in an antisense orientation. To date, CUTs have a relatively uncharacterized function but have been implicated in a number of putative gene regulation and silencing pathways. Thousands of loci leading to the generation of CUTs have been described in the yeast genome. Additionally, stable uncharacterized transcripts, or SUTs, have also been detected in cells and bear many similarities to CUTs but are not degraded through the same pathways.

The gua operon is responsible for regulating the synthesis of guanosine mono phosphate (GMP), a purine nucleotide, from inosine monophosphate. It consists of two structural genes guaB (encodes for IMP dehydrogenase or and guaA apart from the promoter and operator region.

The transactivation domain or trans-activating domain (TAD) is a transcription factor scaffold domain which contains binding sites for other proteins such as transcription coregulators. These binding sites are frequently referred to as activation functions (AFs). TADs are named after their amino acid composition. These amino acids are either essential for the activity or simply the most abundant in the TAD. Transactivation by the Gal4 transcription factor is mediated by acidic amino acids, whereas hydrophobic residues in Gcn4 play a similar role. Hence, the TADs in Gal4 and Gcn4 are referred to as acidic or hydrophobic, respectively.

The Gal4 transcription factor is a positive regulator of gene expression of galactose-induced genes. This protein represents a large fungal family of transcription factors, Gal4 family, which includes over 50 members in the yeast Saccharomyces cerevisiae e.g. Oaf1, Pip2, Pdr1, Pdr3, Leu3.

Kevin Struhl is an American molecular biologist and the David Wesley Gaiser Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. Struhl is primarily known for his work on transcriptional regulatory mechanisms in yeast using molecular, genetic, biochemical, and genomic approaches. More recently, he has used related approaches to study transcriptional regulatory circuits involved in cellular transformation and the formation of cancer stem cells.

References

  1. 1 2 3 4 Martens JA, Laprade L, Winston F (June 2004). "Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene". Nature. 429 (6991): 571–574. Bibcode:2004Natur.429..571M. doi:10.1038/nature02538. PMID   15175754. S2CID   809550.
  2. "Entrez Gene SRG1". 2010-07-03. Retrieved 2010-08-02.
  3. "Yeast Genome SRG1" . Retrieved 2010-08-02.
  4. Albers E, Laizé V, Blomberg A, Hohmann S, Gustafsson L (March 2003). "Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae". The Journal of Biological Chemistry. 278 (12): 10264–10272. doi: 10.1074/jbc.M211692200 . PMID   12525494.
  5. Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (July 2003). "Finding functional features in Saccharomyces genomes by phylogenetic footprinting". Science. 301 (5629): 71–76. Bibcode:2003Sci...301...71C. doi: 10.1126/science.1084337 . PMID   12775844. S2CID   1305166.
  6. "Uniprot Knowledgebase - Protein SRG1" . Retrieved 2010-08-02.
  7. Truesdell GM, Dickman MB (March 1997). "Isolation of pathogen/stress-inducible cDNAs from alfalfa by mRNA differential display" (PDF). Plant Molecular Biology. 33 (4): 737–743. doi:10.1023/A:1005728420374. PMID   9132065. S2CID   35519690.
  8. "GenBank Accs:U42752.1". 27 May 1997. Retrieved 2010-08-02.

Further reading